An Android-based plant disease detection app using AI and Computer Vision. Users can capture or upload plant images to detect diseases, and receive descriptions, causes, treatments, and preventions all available in English, Hindi, and Marathi.
🔗 Download APK from Google Drive
- 🏫 Final Year Project (2025)
- 🎓 BE Computer Engineering
- 🏢 Gokhale Education Society's R. H. Sapat College of Engineering, Nashik
- 📚 Savitribai Phule Pune University (SPPU)
👤 Name | 🌐 GitHub Profile | |
---|---|---|
Bhushan Malekar | xectrone@gmail.com |
|
Srushty Borkar | 1002borkarsr@gmail.com |
|
Prasen Mhaskar | prasenmhaskar45@gmail.com |
|
Anand Dhomase | dhomaseanand0096@gmail.com |
Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, Tomato
Apple Scab, Black Rot, Cedar Apple Rust, Powdery Mildew, Common Rust, Northern Leaf Blight, Citrus Greening, Bacterial Spot, Early Blight, Late Blight, Leaf Mold, Spider Mites, Target Spot, Tomato Mosaic Virus, and more…
- 🌱 Plant Disease Detection using HuggingFace ViT (Vision Transformer) via Flask backend
- 📸 Camera and Gallery Support for image upload
- 🧾 Detailed Diagnosis Info: Description, Cause, Treatment, Prevention
- 🗂️ User-specific History Tracking (without storing images)
- 🌐 Multilingual Support (English, Hindi, Marathi)
- 🔐 Login/Signup integration with Flask backend
- ☀️ Always Light Mode UI (disables system dark mode)
- ℹ️ In-App Info Dialog for usage guide
Layer | Technology |
---|---|
UI Framework | Jetpack Compose |
Programming Lang. | Kotlin |
Local Storage | Room Database |
Backend API | Flask (Python) |
AI Model | HuggingFace ViT (Vision Transformer) |
Language Handling | JSON-based i18n |
📦 agricultural_ai_assistant_android/
│
├── MainActivity.kt # App entry point
│
├── domain/ # Reserved for business logic (currently minimal)
│
└── ui/ # User Interface layer
├── home_screen/
│ ├── DiseaseDetectionApp.kt # Main screen UI
│ ├── DiseaseDetectionResponse.kt # API response model
│ └── ResponseItems.kt # Helper data class for JSON items
│
└── theme/
├── Theme.kt # App theme setup
├── Color.kt, Fonts.kt, Shape.kt # Custom theming
├── CustomColorPalette.kt # Custom colors
├── CustomShape.kt # Rounded UI design
├── Dimen.kt, Constants.kt # App dimensions/constants
└── Type.kt, Typography.kt # Fonts and text styles
Folder | Description |
---|---|
drawable/ |
Icons and camera/upload vector assets |
font/ |
Custom fonts (nunito , rubik , etc.) |
values/ |
Colors, strings, themes, and font configs |
values-night/ |
Overridden night theme (not used in app) |
xml/ |
File path, network config, backups |
- Android Studio Hedgehog+
- Internet connection (for backend calls)
- Flask backend running (or hosted)
-
Clone Repo
git clone https://github.com/xectrone/agricultural_ai_assistant_android.git
-
Open in Android Studio
File → Open → Select project folder -
Edit Flask Backend URL
Modify the base URL inuploadImageAndDetectDisease()
insideDiseaseDetectionApp.kt
. -
Run on Emulator or Physical Device
Click▶️ or "Run App"
The app communicates with this hosted Flask backend:
🔗 https://agricultural-ai-assistant.onrender.com/
Endpoints used:
POST /detect
→ Accepts image, returns predictionPOST /auth/login
&/auth/register
→ Auth
👉 Backend code available here:
https://github.com/xectrone/agricultural_ai_assistant
- 🧾 Local result display without storing images
- 🌐 Supports UTF-8 language strings (Hindi, Marathi)
- 📖 Info dialog popup to guide first-time users
- ☀️ Locks interface in light theme (ignores system dark mode)
App connects to hosted Flask backend at:
https://agricultural-ai-assistant.onrender.com/
APK available for download from:
🔗 Google Drive APK Link
- 🧪 Add offline caching of previous results
- 🗣️ Text-to-speech for diagnosis
- 🌐 Auto language detection from device
- 🖼️ Save result snapshots locally
This project is licensed under the MIT License. See the LICENSE file for more details.