Compression::Util - Implementation of various techniques used in data compression.
use 5.036;
use Getopt::Std       qw(getopts);
use Compression::Util qw(:all);
use constant {CHUNK_SIZE => 1 << 17};
local $Compression::Util::VERBOSE = 0;
getopts('d', \my %opts);
sub compress ($fh, $out_fh) {
    while (read($fh, (my $chunk), CHUNK_SIZE)) {
        print $out_fh bwt_compress($chunk);
    }
}
sub decompress ($fh, $out_fh) {
    while (!eof($fh)) {
        print $out_fh bwt_decompress($fh);
    }
}
$opts{d} ? decompress(\*STDIN, \*STDOUT) : compress(\*STDIN, \*STDOUT);Compression::Util is a function-based module, implementing various techniques used in data compression, such as:
* Burrows-Wheeler transform
* Move-to-front transform
* Huffman Coding
* Arithmetic Coding (in fixed bits)
* Run-length encoding
* Fibonacci coding
* Elias gamma/omega coding
* Delta coding
* BWT-based (de)compression
* LZ77/LZSS (de)compression
* LZW (de)compression
* Bzip2 (de)compression
* GZIP (de)compression
* ZLIB (de)compression
* LZ4 (de)compression
The provided techniques can be easily combined in various ways to create powerful compressors, such as the Bzip2 compressor, which is a pipeline of the following methods:
1. Run-length encoding (RLE4)
2. Burrows-Wheeler transform (BWT)
3. Move-to-front transform (MTF)
4. Zero run-length encoding (ZRLE)
5. Huffman coding
A simple BWT-based compression method (similar to Bzip2) is provided by the function bwt_compress(), which can be explicitly implemented as:
use 5.036;
use Compression::Util qw(:all);
my $data = do { open my $fh, '<:raw', $^X; local $/; <$fh> };
my $rle4 = rle4_encode(string2symbols($data));
my ($bwt, $idx) = bwt_encode(symbols2string($rle4));
my ($mtf, $alphabet) = mtf_encode(string2symbols($bwt));
my $rle = zrle_encode($mtf);
my $enc = pack('N', $idx)
        . encode_alphabet($alphabet)
        . create_huffman_entry($rle);
say "Original size  : ", length($data);
say "Compressed size: ", length($enc);
# Decompress the result
bwt_decompress($enc) eq $data or die "decompression error";A bit value is either 1 or 0.
A bitstring is a string containing only 1s and 0s.
A byte value is an integer between 0 and 255, inclusive.
A string means a binary (non-UTF*) string.
An array of symbols means an array of non-negative integer values.
A filehandle is denoted by $fh.
The encoding of file-handles must be set to :raw.
Compression::Util provides the following package variables:
    $Compression::Util::VERBOSE = 0;           # true to enable verbose/debug mode
    $Compression::Util::LZ_MIN_LEN = 4;        # minimum match length in LZ parsing
    $Compression::Util::LZ_MAX_LEN = 1 << 15;  # maximum match length in LZ parsing
    $Compression::Util::LZ_MAX_DIST = ~0;      # maximum back-reference distance allowed
    $Compression::Util::LZ_MAX_CHAIN_LEN = 32; # how many recent positions to remember for each match in LZ parsingThese package variables can also be imported as:
    use Compression::Util qw(
        $LZ_MIN_LEN
        $LZ_MAX_LEN
        $LZ_MAX_DIST
        $LZ_MAX_CHAIN_LEN
    );Minimum length of a match in LZ parsing. The value must be an integer greater than or equal to 2. Larger values will result in faster parsing, but lower compression ratio.
By default, $LZ_MIN_LEN is set to 4.
NOTE: for lzss_encode_fast() is recommended to set $LZ_MIN_LEN = 5, which will result in slightly better compression ratio.
Maximum length of a match in LZ parsing. The value must be an integer greater than or equal to 0.
By default, $LZ_MAX_LEN is set to 32768.
NOTE: the functions lz77_encode() and lzb_compress() will ignore this value and will always use unlimited match lengths.
Maximum back-reference distance allowed in LZ parsing. Smaller values will result in faster parsing, but lower compression ratio.
By default, the value is unlimited, meaning that arbitrarily large back-references will be generated.
NOTE: the function lzb_compress() will ignore this value and will always use the value 2**16 - 1 as the maximum back-reference distance.
The value of $LZ_MAX_CHAIN_LEN controls the amount of recent positions to remember for each matched prefix. A larger value results in better compression, finding longer matches, at the expense of speed.
By default, $LZ_MAX_CHAIN_LEN is set to 32.
NOTE: the function lzss_encode_fast() will ignore this value, always using a value of 1.
      create_huffman_entry(\@symbols)      # Create a Huffman Coding block
      decode_huffman_entry($fh)            # Decode a Huffman Coding block
      create_ac_entry(\@symbols)           # Create an Arithmetic Coding block
      decode_ac_entry($fh)                 # Decode an Arithmetic Coding block
      create_adaptive_ac_entry(\@symbols)  # Create an Adaptive Arithmetic Coding block
      decode_adaptive_ac_entry($fh)        # Decode an Adaptive Arithmetic Coding block
      mrl_compress($string)                # MRL compression (MTF+ZRLE+RLE4+Huffman coding)
      mrl_decompress($fh)                  # Inverse of the above method
      mrl_compress_symbolic(\@symbols)     # Symbolic MRL compression (MTF+ZRLE+RLE4+Huffman coding)
      mrl_decompress_symbolic($fh)         # Inverse of the above method
      bwt_compress($string)                # BWT-based compression (RLE4+BWT+MTF+ZRLE+Huffman coding)
      bwt_decompress($fh)                  # Inverse of the above method
      bwt_compress_symbolic(\@symbols)     # Symbolic BWT-based compression (RLE4+sBWT+MTF+ZRLE+Huffman coding)
      bwt_decompress_symbolic($fh)         # Inverse of the above method
      bzip2_compress($string)              # Compress a given string using the Bzip2 format
      bzip2_decompress($fh)                # Inverse of the above method
      gzip_compress($string)               # Compress a given string using the GZIP format
      gzip_decompress($fh)                 # Inverse of the above method
      zlib_compress($string)               # Compress a given string using the ZLIB format
      zlib_decompress($fh)                 # Inverse of the above method
      lzss_compress($string)               # LZSS + DEFLATE-like encoding of lengths and distances
      lzss_decompress($fh)                 # Inverse of the above method
      lzss_compress_symbolic(\@symbols)    # Symbolic LZSS + DEFLATE-like encoding of lengths and distances
      lzss_decompress_symbolic($fh)        # Inverse of the above method
      lz77_compress($string)               # LZ77 + Huffman coding of lengths and literals + OBH for distances
      lz77_decompress($fh)                 # Inverse of the above method
      lz77_compress_symbolic(\@symbols)    # Symbolic LZ77 + Huffman coding of lengths and literals + OBH for distances
      lz77_decompress_symbolic($fh)        # Inverse of the above method
      lzb_compress($string)                # LZSS compression, using a byte-aligned encoding method, similar to LZ4
      lzb_decompress($fh)                  # Inverse of the above method
      lzw_compress($string)                # LZW + abc_encode() compression
      lzw_decompress($fh)                  # Inverse of the above method
      lz4_compress($string)                # Compress a given string using the LZ4 frame format
      lz4_decompress($fh)                  # Inverse of the above method      deltas(\@ints)                       # Computes the differences between integers
      accumulate(\@deltas)                 # Inverse of the above method
      delta_encode(\@ints)                 # Delta+RLE encoding of an array-ref of integers
      delta_decode($fh)                    # Inverse of the above method
      fibonacci_encode(\@symbols)          # Fibonacci coding of an array-ref of symbols
      fibonacci_decode($fh)                # Inverse of the above method
      elias_gamma_encode(\@symbols)        # Elias Gamma coding method of an array-ref of symbols
      elias_gamma_decode($fh)              # Inverse of the above method
      elias_omega_encode(\@symbols)        # Elias Omega coding method of an array-ref of symbols
      elias_omega_decode($fh)              # Inverse of the above method
      abc_encode(\@symbols)                # Adaptive Binary Concatenation method of an array-ref of symbols
      abc_decode($fh)                      # Inverse of the above method
      obh_encode(\@symbols)                # Offset bits + Huffman coding of an array-ref of symbols
      obh_decode($fh)                      # Inverse of the above method
      bwt_encode($string)                  # Burrows-Wheeler transform
      bwt_decode($bwt, $idx)               # Inverse of Burrows-Wheeler transform
      bwt_encode_symbolic(\@symbols)       # Burrows-Wheeler transform over an array-ref of symbols
      bwt_decode_symbolic(\@bwt, $idx)     # Inverse of symbolic Burrows-Wheeler transform
      mtf_encode(\@symbols)                # Move-to-front transform
      mtf_decode(\@mtf, \@alphabet)        # Inverse of the above method
      encode_alphabet(\@alphabet)          # Encode an alphabet of symbols into a binary string
      decode_alphabet($fh)                 # Inverse of the above method
      encode_alphabet_256(\@alphabet)      # Encode an alphabet of symbols (limited to [0..255]) into a binary string
      decode_alphabet_256($fh)             # Inverse of the above method
      frequencies(\@symbols)               # Returns a dictionary with symbol frequencies
      run_length(\@symbols, $max=undef)    # Run-length encoding, returning a 2D array-ref
      rle4_encode(\@symbols, $max=255)     # Run-length encoding with 4 or more consecutive characters
      rle4_decode(\@rle4)                  # Inverse of the above method
      zrle_encode(\@symbols)               # Run-length encoding of zeros
      zrle_decode(\@zrle)                  # Inverse of the above method
      ac_encode(\@symbols)                 # Arithmetic Coding applied on an array-ref of symbols
      ac_decode($bitstring, \%freq)        # Inverse of the above method
      adaptive_ac_encode(\@symbols)               # Adaptive Arithmetic Coding applied on an array-ref of symbols
      adaptive_ac_decode($bitstring, \@alphabet)  # Inverse of the above method
      lzw_encode($string)                  # LZW encoding of a given string
      lzw_decode(\@symbols)                # Inverse of the above method      crc32($string, $prev_crc = 0)        # Compute the CRC32 value of a given string
      read_bit($fh, \$buffer)              # Read one bit from file-handle (MSB)
      read_bit_lsb($fh, \$buffer)          # Read one bit from file-handle (LSB)
      read_bits($fh, $len)                 # Read `$len` bits from file-handle (MSB)
      read_bits_lsb($fh, $len)             # Read `$len` bits from file-handle (LSB)
      int2bits($symbol, $size)             # Convert an integer to bits of width `$size` (MSB)
      int2bits_lsb($symbol, $size)         # Convert an integer to bits of width `$size` (LSB)
      bits2int($fh, $size, \$buffer)       # Inverse of `int2bits()`
      bits2int_lsb($fh, $size, \$buffer)   # Inverse of `int2bits_lsb()`
      bytes2int($fh, $n)                   # Read `$n` bytes from file-handle as an integer (MSB)
      bytes2int_lsb($fh, $n)               # Read `$n` bytes from file-handle as an integer (LSB)
      int2bytes($symbol, $size)            # Convert an integer into `$size` bytes. (MSB)
      int2bytes_lsb($symbol, $size)        # Convert an integer into `$size` bytes. (LSB)
      string2symbols($string)              # Returns an array-ref of code points
      symbols2string(\@symbols)            # Returns a string, given an array-ref of code points
      read_null_terminated($fh)            # Read a binary string that ends with NULL ("\0")
      binary_vrl_encode($bitstring)        # Binary variable run-length encoding
      binary_vrl_decode($bitstring)        # Binary variable run-length decoding
      bwt_sort($string)                    # Burrows-Wheeler sorting
      bwt_sort_symbolic(\@symbols)         # Burrows-Wheeler sorting, applied on an array-ref of symbols
      huffman_encode(\@symbols, \%dict)    # Huffman encoding
      huffman_decode($bitstring, \%dict)   # Huffman decoding, given a string of bits
      huffman_from_freq(\%freq)            # Create Huffman dictionaries, given an hash-ref of frequencies
      huffman_from_symbols(\@symbols)      # Create Huffman dictionaries, given an array-ref of symbols
      huffman_from_code_lengths(\@lens)    # Create canonical Huffman codes, given an array-ref of code lengths
      make_deflate_tables($max_dist, $max_len) # Returns the DEFLATE tables for distance and length symbols
      find_deflate_index($value, \@table)      # Returns the index in a DEFLATE table, given a numerical value
      lzss_encode($string)                     # LZSS encoding into literals, distances and lengths
      lzss_encode_symbolic(\@symbols)          # LZSS encoding into literals, distances and lengths (symbolic)
      lzss_encode_fast($string)                # Fast-LZSS encoding into literals, distances and lengths
      lzss_encode_fast_symbolic(\@symbols)     # Fast-LZSS encoding into literals, distances and lengths (symbolic)
      lzss_decode(\@lits, \@dist, \@lens)          # Inverse of lzss_encode() and lzss_encode_fast()
      lzss_decode_symbolic(\@lits, \@dist, \@lens) # Inverse of lzss_encode_symbolic() and lzss_encode_fast_symbolic()
      lz77_encode($string)                         # LZ77 encoding into literals, distances, lengths and matches
      lz77_encode_symbolic(\@symbols)              # LZ77 encoding into literals, distances, lengths and matches (symbolic)
      lz77_decode(\@lits, \@dist, \@lens, \@matches)           # Inverse of lz77_encode()
      lz77_decode_symbolic(\@lits, \@dist, \@lens, \@matches)  # Inverse of lz77_encode_symbolic()
      deflate_encode(\@lits, \@dist, \@lens)   # DEFLATE-like encoding of values returned by lzss_encode()
      deflate_decode($fh)                      # Inverse of the above method    my $string = create_huffman_entry(\@symbols);High-level function that generates a Huffman coding block, given an array-ref of symbols.
    my $symbols = decode_huffman_entry($fh);
    my $symbols = decode_huffman_entry($string);Inverse of create_huffman_entry().
    my $string = create_ac_entry(\@symbols);High-level function that generates an Arithmetic Coding block, given an array-ref of symbols.
    my $symbols = decode_ac_entry($fh);
    my $symbols = decode_ac_entry($string);Inverse of create_ac_entry().
    my $string = create_adaptive_ac_entry(\@symbols);High-level function that generates an Adaptive Arithmetic Coding block, given an array-ref of symbols.
    my $symbols = decode_adaptive_ac_entry($fh);
    my $symbols = decode_adaptive_ac_entry($string);Inverse of create_adaptive_ac_entry().
    # With Huffman coding
    my $string = lz77_compress($data);
    my $string = lz77_compress(\@symbols);
    # With Arithmetic Coding
    my $string = lz77_compress($data, \&create_ac_entry);
    # Using Fast-LZSS parsing + Huffman coding
    my $string = lz77_compress($data, \&create_huffman_entry, \&lzss_encode_fast);High-level function that performs LZ77 compression on the provided data, using the pipeline:
1. lz77_encode
2. create_huffman_entry(literals)
3. create_huffman_entry(lengths)
4. create_huffman_entry(matches)
5. obh_encode(distances)
The function accepts either a string or an array-ref of symbols as the first argument.
    # With Huffman coding
    my $data = lz77_decompress($fh);
    my $data = lz77_decompress($string);
    # With Arithemtic coding
    my $data = lz77_decompress($fh, \&decode_ac_entry);
    my $data = lz77_decompress($string, \&decode_ac_entry);
    # Symbolic, with Huffman coding
    my $symbols = lz77_decompress_symbolic($fh);
    my $symbols = lz77_decompress_symbolic($string);Inverse of lz77_compress() and lz77_compress_symbolic(), respectively.
    # With Huffman coding
    my $string = lzss_compress($data);
    my $string = lzss_compress(\@symbols);
    # With Arithmetic Coding
    my $string = lzss_compress($data, \&create_ac_entry);
    # Using Fast-LZSS parsing + Huffman coding
    my $string = lzss_compress($data, \&create_huffman_entry, \&lzss_encode_fast);High-level function that performs LZSS (Lempel-Ziv-Storer-Szymanski) compression on the provided data, using the pipeline:
1. lzss_encode
2. deflate_encode
The function accepts either a string or an array-ref of symbols as the first argument.
    # With Huffman coding
    my $data = lzss_decompress($fh);
    my $data = lzss_decompress($string);
    # With Arithmetic coding
    my $data = lzss_decompress($fh, \&decode_ac_entry);
    my $data = lzss_decompress($string, \&decode_ac_entry);
    # Symbolic, with Huffman coding
    my $symbols = lzss_decompress_symbolic($fh);
    my $symbols = lzss_decompress_symbolic($string);Inverse of lzss_compress() and lzss_compress_symbolic(), respectively.
    my $string = lzb_compress($data);
    my $string = lzb_compress($data, \&lzss_encode_fast);   # with fast-LZ parsingHigh-level function that performs byte-oriented LZSS compression, inspired by LZ4.
    my $data = lzb_decompress($fh);
    my $data = lzb_decompress($string);Inverse of lzb_compress().
    my $string = lz4_compress($fh);
    my $string = lz4_compress($data);
    my $string = lz4_compress($data, \&lzss_encode_fast);   # with fast-LZ parsingValid LZ4 compressor, using the LZ4 Frame format, given either a string or an input file-handle.
The input data is split into chunks of length 2**17 and compressed into independent LZ4 blocks.
    my $data = lz4_decompress($fh);
    my $data = lz4_decompress($string);Decompress LZ4 Frame data, given either a string or an input file-handle. Concatenated LZ4 Frames are also supported.
    my $string = lzw_compress($data);High-level function that performs LZW (Lempel-Ziv-Welch) compression on the provided data, using the pipeline:
1. lzw_encode
2. abc_encode
    my $data = lzw_decompress($fh);
    my $data = lzw_decompress($string);Performs Lempel-Ziv-Welch (LZW) decompression on the provided string or file-handle. Inverse of lzw_compress().
    # Using Huffman Coding
    my $string = bwt_compress($data);
    # Using Arithmetic Coding
    my $string = bwt_compress($data, \&create_ac_entry);High-level function that performs BWT-based compression on the provided data, using the pipeline:
1. rle4_encode
2. bwt_encode
3. mtf_encode
4. zrle_encode
5. create_huffman_entry
    # With Huffman coding
    my $data = bwt_decompress($fh);
    my $data = bwt_decompress($string);
    # With Arithmetic coding
    my $data = bwt_decompress($fh, \&decode_ac_entry);
    my $data = bwt_decompress($string, \&decode_ac_entry);Inverse of bwt_compress().
    # Does Huffman coding
    my $string = bwt_compress_symbolic(\@symbols);
    # Does Arithmetic coding
    my $string = bwt_compress_symbolic(\@symbols, \&create_ac_entry);Similar to bwt_compress(), except that it accepts an arbitrary array-ref of non-negative integer values as input. It is also a bit slower on large inputs.
    # Using Huffman coding
    my $symbols = bwt_decompress_symbolic($fh);
    my $symbols = bwt_decompress_symbolic($string);
    # Using Arithmetic coding
    my $symbols = bwt_decompress_symbolic($fh, \&decode_ac_entry);
    my $symbols = bwt_decompress_symbolic($string, \&decode_ac_entry);Inverse of bwt_compress_symbolic().
    my $string = bzip2_compress($data);
    my $string = bzip2_compress($fh);Valid Bzip2 compressor, given a string or an input file-handle.
    my $data = bzip2_decompress($string);
    my $data = bzip2_decompress($fh);Valid Bzip2 decompressor, given a string or an input file-handle.
    my $string = gzip_compress($fh);
    my $string = gzip_compress($data);
    my $string = gzip_compress($data, \&lzss_encode_fast);  # using fast LZ-parsingValid GZIP compressor (RFC 1952), given a string or an input file-handle.
    my $data = gzip_decompress($string);
    my $data = gzip_decompress($fh);Valid GZIP decompressor (RFC 1952), given a string or an input file-handle.
    my $string = zlib_compress($fh);
    my $string = zlib_compress($data);
    my $string = zlib_compress($data, \&lzss_encode_fast);  # using fast LZ-parsingValid ZLIB compressor (RFC 1950), given a string or an input file-handle.
    my $data = zlib_decompress($string);
    my $data = zlib_decompress($fh);Valid ZLIB decompressor (RFC 1950), given a string or an input file-handle.
    # Does Huffman coding
    my $enc = mrl_compress($str);
    my $enc = mrl_compress(\@symbols);
    # Does Arithmetic coding
    my $enc = mrl_compress($str, \&create_ac_entry);
    my $enc = mrl_compress(\@symbols, \&create_ac_entry);A fast compression method, using the following pipeline:
1. mtf_encode
2. zrle_encode
3. rle4_encode
4. create_huffman_entry
It accepts an arbitrary array-ref of non-negative integer values as input.
    # With Huffman coding
    my $data = mrl_decompress($fh);
    my $data = mrl_decompress($string);
    # Symbolic, with Huffman coding
    my $symbols = mrl_decompress_symbolic($fh);
    my $symbols = mrl_decompress_symbolic($string);
    # Symbolic, with Arithmetic coding
    my $symbols = mrl_decompress_symbolic($fh, \&decode_ac_entry);
    my $symbols = mrl_decompress_symbolic($string, \&decode_ac_entry);Inverse of mrl_decompress() and mrl_compress_symbolic().
    my $freq = frequencies(\@symbols);Returns an hash ref dictionary with frequencies, given an array-ref of symbols.
    my $deltas = deltas(\@integers);Computes the differences between consecutive integers, returning an array.
    my $integers = accumulate(\@deltas);Inverse of deltas().
    my $string = delta_encode(\@integers);Encodes a sequence of integers (including negative integers) using Delta + Run-length + Elias omega coding, returning a binary string.
Delta encoding calculates the difference between consecutive integers in the sequence and encodes these differences using Elias omega coding. When it's beneficial, runs of identical symbols are collapsed with RLE.
This method supports both positive and negative integers.
    # Given a file-handle
    my $integers = delta_decode($fh);
    # Given a string
    my $integers = delta_decode($string);Inverse of delta_encode().
    my $string = fibonacci_encode(\@symbols);Encodes a sequence of non-negative integers using Fibonacci coding, returning a binary string.
    # Given a file-handle
    my $symbols = fibonacci_decode($fh);
    # Given a binary string
    my $symbols = fibonacci_decode($string);Inverse of fibonacci_encode().
    my $string = elias_gamma_encode(\@symbols);Encodes a sequence of non-negative integers using Elias Gamma coding, returning a binary string.
    # Given a file-handle
    my $symbols = elias_gamma_decode($fh);
    # Given a binary string
    my $symbols = elias_gamma_decode($string);Inverse of elias_gamma_encode().
    my $string = elias_omega_encode(\@symbols);Encodes a sequence of non-negative integers using Elias Omega coding, returning a binary string.
    # Given a file-handle
    my $symbols = elias_omega_decode($fh);
    # Given a binary string
    my $symbols = elias_omega_decode($string);Inverse of elias_omega_encode().
    my $string = abc_encode(\@symbols);Encodes a sequence of non-negative integers using the Adaptive Binary Concatenation encoding method.
This method is particularly effective in encoding a sequence of integers that are in ascending order or have roughly the same size in binary.
    # Given a file-handle
    my $symbols = abc_decode($fh);
    # Given a binary string
    my $symbols = abc_decode($string);Inverse of abc_encode().
    # With Huffman Coding
    my $string = obh_encode(\@symbols);
    # With Arithmetic Coding
    my $string = obh_encode(\@symbols, \&create_ac_entry);Encodes a sequence of non-negative integers using offset bits and Huffman coding.
This method is particularly effective in encoding a sequence of moderately large random integers, such as the list of distances returned by lzss_encode().
    # Given a file-handle
    my $symbols = obh_decode($fh);                        # Huffman decoding
    my $symbols = obh_decode($fh, \&decode_ac_entry);     # Arithmetic decoding
    # Given a binary string
    my $symbols = obh_decode($string);                    # Huffman decoding
    my $symbols = obh_decode($string, \&decode_ac_entry); # Arithmetic decodingInverse of obh_encode().
    my ($bwt, $idx) = bwt_encode($string);
    my ($bwt, $idx) = bwt_encode($string, $lookahead_len);Applies the Burrows-Wheeler Transform (BWT) to a given string.
    my $string = bwt_decode($bwt, $idx);Reverses the Burrows-Wheeler Transform (BWT) applied to a string.
The function returns the original string.
    my ($bwt_symbols, $idx) = bwt_encode_symbolic(\@symbols);Applies the Burrows-Wheeler Transform (BWT) to a sequence of symbolic elements.
    my $symbols = bwt_decode_symbolic(\@bwt_symbols, $idx);Reverses the Burrows-Wheeler Transform (BWT) applied to a sequence of symbolic elements.
    my $mtf = mtf_encode(\@symbols, \@alphabet);
    my ($mtf, $alphabet) = mtf_encode(\@symbols);Performs Move-To-Front (MTF) encoding on a sequence of symbols.
The function returns the encoded MTF sequence and the sorted list of unique symbols in the input data, representing the alphabet.
Optionally, the alphabet can be provided as a second argument. When two arguments are provided, only the MTF sequence is returned.
    my $symbols = mtf_decode(\@mtf, \@alphabet);Inverse of mtf_encode().
    my $string = encode_alphabet(\@alphabet);        # supports arbitrarily large symbols
    my $string = encode_alphabet_256(\@alphabet);    # limited to symbols [0..255]Encode a sorted alphabet of symbols into a binary string.
    my $alphabet = decode_alphabet($fh);
    my $alphabet = decode_alphabet($string);
    my $alphabet = decode_alphabet_256($fh);
    my $alphabet = decode_alphabet_256($string);Decodes an encoded alphabet, given a file-handle or a binary string, returning an array-ref of symbols. Inverse of encode_alphabet().
    my $rl = run_length(\@symbols);
    my $rl = run_length(\@symbols, $max_run);Performs Run-Length Encoding (RLE) on a sequence of symbolic elements.
It takes two parameters: \@symbols, representing an array of symbols, and $max_run, indicating the maximum run length allowed.
The function returns a 2D-array, with pairs: [symbol, run_length], such that the following code reconstructs the \@symbols array:
    my @symbols = map { ($_->[0]) x $_->[1] } @$rl;By default, the maximum run-length is unlimited.
    my $rle4 = rle4_encode($string);
    my $rle4 = rle4_encode(\@symbols);
    my $rle4 = rle4_encode(\@symbols, $max_run);Performs Run-Length Encoding (RLE) on a sequence of symbolic elements, specifically designed for runs of four or more consecutive symbols.
It takes two parameters: \@symbols, representing an array of symbols, and $max_run, indicating the maximum run length allowed during encoding.
The function returns the encoded RLE sequence as an array-ref of symbols.
By default, the maximum run-length is limited to 255.
    my $symbols = rle4_decode(\@rle4);
    my $symbols = rle4_decode($rle4_string);Inverse of rle4_encode().
    my $zrle = zrle_encode(\@symbols);Performs Zero-Run-Length Encoding (ZRLE) on a sequence of symbolic elements, returning the encoded ZRLE sequence as an array-ref of symbols.
This function efficiently encodes runs of zeros, but also increments each symbol by 1.
    my $symbols = zrle_decode($zrle);Inverse of zrle_encode().
    my ($bitstring, $freq) = ac_encode(\@symbols);Performs Arithmetic Coding on the provided symbols.
It takes a single parameter, \@symbols, representing the symbols to be encoded.
The function returns two values: $bitstring, which is a string of 1s and 0s, and $freq, representing the frequency table used for encoding.
    my $symbols = ac_decode($bits_fh, \%freq);
    my $symbols = ac_decode($bitstring, \%freq);Performs Arithmetic Coding decoding using the provided frequency table and a string of 1s and 0s. Inverse of ac_encode().
It takes two parameters: $bitstring, representing a string of 1s and 0s containing the arithmetic coded data, and \%freq, representing the frequency table used for encoding.
The function returns the decoded sequence of symbols.
    my ($bitstring, $alphabet) = adaptive_ac_encode(\@symbols);Performs Adaptive Arithmetic Coding on the provided symbols.
It takes a single parameter, \@symbols, representing the symbols to be encoded.
The function returns two values: $bitstring, which is a string of 1s and 0s, and $alphabet, which is an array-ref of distinct sorted symbols.
    my $symbols = adaptive_ac_decode($bits_fh, \@alphabet);
    my $symbols = adaptive_ac_decode($bitstring, \@alphabet);Performs Adaptive Arithmetic Coding decoding using the provided frequency table and a string of 1s and 0s.
It takes two parameters: $bitstring, representing a string of 1s and 0s containing the adaptive arithmetic coded data, and \@alphabet, representing the array of distinct sorted symbols that appear in the encoded data.
The function returns the decoded sequence of symbols.
    my $symbols = lzw_encode($string);Performs Lempel-Ziv-Welch (LZW) encoding on the provided string.
It takes a single parameter, $string, representing the data to be encoded.
The function returns an array-ref of symbols.
    my $string = lzw_decode(\@symbols);Performs Lempel-Ziv-Welch (LZW) decoding on the provided symbols. Inverse of lzw_encode().
The function returns the decoded string.
    my $int32 = crc32($data);
    my $int32 = crc32($data, $prev_crc32);Compute the CRC32 checksum of a given string.
    my $int32 = adler32($data);
    my $int32 = adler32($data, $prev_adler32);Compute the Adler32 checksum of a given string.
    my $bit = read_bit($fh, \$buffer);Reads a single bit from a file-handle $fh (MSB order).
The function stores the extra bits inside the $buffer, reading one character at a time from the file-handle.
    my $bit = read_bit_lsb($fh, \$buffer);Reads a single bit from a file-handle $fh (LSB order).
The function stores the extra bits inside the $buffer, reading one character at a time from the file-handle.
    my $bitstring = read_bits($fh, $bits_len);Reads a specified number of bits ($bits_len) from a file-handle ($fh) and returns them as a string, in MSB order.
    my $bitstring = read_bits_lsb($fh, $bits_len);Reads a specified number of bits ($bits_len) from a file-handle ($fh) and returns them as a string, in LSB order.
    my $bitstring = int2bits($symbol, $size)Convert a non-negative integer to a bitstring of width $size, in MSB order.
    my $bitstring = int2bits_lsb($symbol, $size)Convert a non-negative integer to a bitstring of width $size, in LSB order.
    my $string = int2bytes($symbol, $size);Convert a non-negative integer to a byte-string of width $size, in MSB order.
    my $string = int2bytes_lsb($symbol, $size);Convert a non-negative integer to a byte-string of width $size, in LSB order.
    my $integer = bits2int($fh, $size, \$buffer);Read $size bits from a file-handle $fh and convert them to an integer, in MSB order. Inverse of int2bits().
The function stores the extra bits inside the $buffer, reading one character at a time from the file-handle.
    my $integer = bits2int_lsb($fh, $size, \$buffer);Read $size bits from a file-handle $fh and convert them to an integer, in LSB order. Inverse of int2bits_lsb().
The function stores the extra bits inside the $buffer, reading one character at a time from the file-handle.
    my $integer = bytes2int($fh, $n);
    my $integer = bytes2int($str, $n);Read $n bytes from a file-handle $fh or from a string $str and convert them to an integer, in MSB order.
    my $integer = bytes2int_lsb($fh, $n);
    my $integer = bytes2int_lsb($str, $n);Read $n bytes from a file-handle $fh or from a string $str and convert them to an integer, in LSB order.
    my $symbols = string2symbols($string)Returns an array-ref of code points, given a string.
    my $string = symbols2string(\@symbols)Returns a string, given an array-ref of code points.
    my $string = read_null_terminated($fh)Read a string from file-handle $fh that ends with a NULL character ("\0").
    my $bitstring_enc = binary_vrl_encode($bitstring);Given a string of 1s and 0s, returns back a bitstring of 1s and 0s encoded using variable run-length encoding.
    my $bitstring = binary_vrl_decode($bitstring_enc);Given an encoded bitstring, returned by binary_vrl_encode(), gives back the decoded string of 1s and 0s.
    my $indices = bwt_sort($string);
    my $indices = bwt_sort($string, $lookahead_len);Low-level function that sorts the rotations of a given string using the Burrows-Wheeler Transform (BWT) algorithm.
It takes two parameters: $string, which is the input string to be transformed, and $LOOKAHEAD_LEN (optional), representing the length of look-ahead during sorting.
The function returns an array-ref of indices.
There is probably no need to call this function explicitly. Use bwt_encode() instead!
    my $indices = bwt_sort_symbolic(\@symbols);Low-level function that sorts the rotations of a sequence of symbolic elements using the Burrows-Wheeler Transform (BWT) algorithm.
It takes a single parameter \@symbols, which represents the input sequence of symbolic elements. The function returns an array of indices.
There is probably no need to call this function explicitly. Use bwt_encode_symbolic() instead!
    my $dict = huffman_from_freq(\%freq);
    my ($dict, $rev_dict) = huffman_from_freq(\%freq);Low-level function that constructs Huffman prefix codes, based on the frequency of symbols provided in a hash table.
It takes a single parameter, \%freq, representing the hash table where keys are symbols, and values are their corresponding frequencies.
The function returns two values: $dict, which is the mapping of symbols to Huffman codes, and $rev_dict, which holds the reverse mapping of Huffman codes to symbols.
The prefix codes are in canonical form, as defined in RFC 1951 (Section 3.2.2).
    my $dict = huffman_from_symbols(\@symbols);
    my ($dict, $rev_dict) = huffman_from_symbols(\@symbols);Low-level function that constructs Huffman prefix codes, given an array-ref of symbols.
It takes a single parameter, \@symbols, from which it computes the frequency of each symbol and generates the corresponding Huffman prefix codes.
The function returns two values: $dict, which is the mapping of symbols to Huffman codes, and $rev_dict, which holds the reverse mapping of Huffman codes to symbols.
The prefix codes are in canonical form, as defined in RFC 1951 (Section 3.2.2).
    my $dict = huffman_from_code_lengths(\@code_lengths);
    my ($dict, $rev_dict) = huffman_from_code_lengths(\@code_lengths);Low-level function that constructs a dictionary of canonical prefix codes, given an array of code lengths, as defined in RFC 1951 (Section 3.2.2).
It takes a single parameter, \@code_lengths, where entry $i in the array corresponds to the code length for symbol $i.
The function returns two values: $dict, which is the mapping of symbols to Huffman codes, and $rev_dict, which holds the reverse mapping of Huffman codes to symbols.
    my $bitstring = huffman_encode(\@symbols, $dict);Low-level function that performs Huffman encoding on a sequence of symbols using a provided dictionary, returned by huffman_from_freq().
It takes two parameters: \@symbols, representing the sequence of symbols to be encoded, and $dict, representing the Huffman dictionary mapping symbols to their corresponding Huffman codes.
The function returns a concatenated string of 1s and 0s, representing the Huffman-encoded sequence of symbols.
    my $symbols = huffman_decode($bitstring, $rev_dict);Low-level function that decodes a Huffman-encoded binary string into a sequence of symbols using a provided reverse dictionary.
It takes two parameters: $bitstring, representing the Huffman-encoded string of 1s and 0s, as returned by huffman_encode(), and $rev_dict, representing the reverse dictionary mapping Huffman codes to their corresponding symbols.
The function returns the decoded sequence of symbols as an array-ref.
    my ($literals, $distances, $lengths, $matches) = lz77_encode($string);
    my ($literals, $distances, $lengths, $matches) = lz77_encode(\@symbols);Low-level function that combines LZSS with ideas from the LZ4 method.
The function returns four values:
    $literals   # array-ref of uncompressed symbols
    $distances  # array-ref of back-reference distances
    $lengths    # array-ref of literal lengths
    $matches    # array-ref of match lengthsThe output can be decoded with lz77_decode() and lz77_decode_symbolic(), respectively.
    my $string  = lz77_decode(\@literals, \@distances, \@lengths, \@matches);
    my $symbols = lz77_decode_symbolic(\@literals, \@distances, \@lengths, \@matches);Low-level function that performs decoding using the provided literals, distances, lengths and matches, returned by LZ77 encoding.
Inverse of lz77_encode() and lz77_encode_symbolic(), respectively.
    # Standard version
    my ($literals, $distances, $lengths) = lzss_encode($data, %params);
    my ($literals, $distances, $lengths) = lzss_encode(\@symbols, %params);
    # Faster version
    my ($literals, $distances, $lengths) = lzss_encode_fast($data, %params);
    my ($literals, $distances, $lengths) = lzss_encode_fast(\@symbols, %params);Low-level function that applies the LZSS (Lempel-Ziv-Storer-Szymanski) algorithm on the provided data.
The accepted %params are:
    min_len         => $LZ_MIN_LEN,
    max_len         => $LZ_MAX_LEN,
    max_dist        => $LZ_MAX_DIST,
    max_chain_len   => $LZ_MAX_CHAIN_LEN,The function returns three values:
    $literals   # array-ref of uncompressed symbols
    $distances  # array-ref of back-reference distances
    $lengths    # array-ref of match lengthsThe output can be decoded with lzss_decode() and lzss_decode_symbolic(), respectively.
my $string  = lzss_decode(\@literals, \@distances, \@lengths);
my $symbols = lzss_decode_symbolic(\@literals, \@distances, \@lengths);
Low-level function that decodes the LZSS encoding, using the provided literals, distances, and lengths of matched sub-strings.
Inverse of lzss_encode() and lzss_encode_fast().
    # Returns a binary string
    my $string = deflate_encode(\@literals, \@distances, \@lengths);
    my $string = deflate_encode(\@literals, \@distances, \@lengths, \&create_ac_entry);Low-level function that encodes the results returned by lzss_encode() and lzss_encode_fast(), using a DEFLATE-like approach, combined with Huffman coding.
    # Huffman decoding
    my ($literals, $distances, $lengths) = deflate_decode($fh);
    my ($literals, $distances, $lengths) = deflate_decode($string);
    # Arithmetic decoding
    my ($literals, $distances, $lengths) = deflate_decode($fh, \&decode_ac_entry);
    my ($literals, $distances, $lengths) = deflate_decode($string, \&decode_ac_entry);Inverse of deflate_encode().
    my ($DISTANCE_SYMBOLS, $LENGTH_SYMBOLS, $LENGTH_INDICES) = make_deflate_tables($max_dist, $max_len);Low-level function that returns a list of tables used in encoding the relative back-reference distances and lengths returned by lzss_encode() and lzss_encode_fast().
When no arguments are provided:
    $max_dist = $Compression::Util::LZ_MAX_DIST
    $max_len  = $Compression::Util::LZ_MAX_LENThere is no need to call this function explicitly. Use deflate_encode() instead!
    my $index = find_deflate_index($value, $DISTANCE_SYMBOLS);Low-level function that returns the index inside the DEFLATE tables for a given value.
    my $bt0_header = deflate_create_block_type_0_header($chunk);Creates the header for a DEFLATE block of type 0 (uncompressed), as a bitstring, without including the block code number 00.
The length of the $chunk must not exceed 2^16 - 1.
To create a DEFLATE block of type 0, including the content, use:
    my $block_type_0 = pack('b*', '00') . pack('b*', $bt0_header) . $chunk;which can be recovered as:
    open my $fh, '<:raw', \$block_type_0;
    my ($buffer, $search_window) = ('', '');
    my $chunk = deflate_extract_next_block($fh, \$buffer, \$search_window);    my $bitstring = deflate_create_block_type_1($literals, $distances, $lengths);Creates a DEFLATE block of type 1 (fixed prefix-codes), as a bitstring, given the ARRAY-refs of literals, distances and lengths, returned by lzss_encode().
This type of block uses fixed prefix-codes and is pretty fast.
    my $bitstring = deflate_create_block_type_1($literals, $distances, $lengths);Creates a DEFLATE block of type 2 (dynamic prefix-codes), as a bitstring, given the ARRAY-refs of literals, distances and lengths, returned by lzss_encode().
This type of block uses dynamic prefix-codes (Huffman codes) and produces good compression ratio on most inputs.
    my $data = deflate_extract_block_type_0($fh, \$buffer, \$search_window);Given an input filehandle, it extracts a DEFLATE block of type 0 (uncompressed).
    my ($buffer, $search_window) = ('', '');
    my $block_type = bits2int_lsb($fh, 2, \$buffer);
    $block_type == 0 or die "Not a block of type 0";
    my $decoded_chunk = deflate_extract_block_type_0($fh, \$buffer, \$search_window);    my $data = deflate_extract_block_type_1($fh, \$buffer, \$search_window);Given an input filehandle, a bitstring buffer and a search window, it extracts a DEFLATE block of type 1 (fixed prefix-codes).
    my ($buffer, $search_window) = ('', '');
    my $block_type = bits2int_lsb($fh, 2, \$buffer);
    $block_type == 1 or die "Not a block of type 1";
    my $decoded_chunk = deflate_extract_block_type_1($fh, \$buffer, \$search_window);    my $data = deflate_extract_block_type_2($fh, \$buffer, \$search_window);Given an input filehandle, a bitstring buffer and a search window, it extracts a DEFLATE block of type 2 (dynamic prefix-codes).
    my ($buffer, $search_window) = ('', '');
    my $block_type = bits2int_lsb($fh, 2, \$buffer);
    $block_type == 2 or die "Not a block of type 2";
    my $decoded_chunk = deflate_extract_block_type_2($fh, \$buffer, \$search_window);    my $data = deflate_extract_next_block($fh, \$buffer, \$search_window);Given an input filehandle, a bitstring buffer and a search window, it extracts the next DEFLATE block. The next two bits in the input file-handle (or in the bitstring buffer) must contain the block-type number.
Each function can be exported individually, as:
    use Compression::Util qw(bwt_compress);By specifying the :all keyword, will export all the exportable functions:
    use Compression::Util qw(:all);Nothing is exported by default.
The functions can be combined in various ways, easily creating novel compression methods, as illustrated in the following examples.
    my $enc = lzss_compress($str, \&mrl_compress_symbolic);
    my $dec = lzss_decompress($enc, \&mrl_decompress_symbolic);    my $enc = lz77_compress($str, \&obh_encode);
    my $dec = lz77_decompress($enc, \&obh_decode);    my $enc = lzss_compress($str, \&bwt_compress_symbolic);
    my $dec = lzss_decompress($enc, \&bwt_decompress_symbolic);    my $enc = bwt_compress($str, \&lzss_compress_symbolic);
    my $dec = bwt_decompress($enc, \&lzss_decompress_symbolic);    my $enc = lzw_compress($str, \&fibonacci_encode);
    my $dec = lzw_decompress($enc, \&fibonacci_decode);    my $enc = bwt_compress($str, sub ($s) { lz77_compress_symbolic($s, \&mrl_compress_symbolic) });
    my $dec = bwt_decompress($enc, sub ($s) { lz77_decompress_symbolic($s, \&mrl_decompress_symbolic) });Combining LZ77 + BWT compression + Fibonacci encoding + Huffman coding + OBH encoding + MRL compression:
    # Compression
    my $enc = do {
        my ($literals, $distances, $lengths, $matches) = lz77_encode($str);
        bwt_compress(symbols2string($literals))
          . fibonacci_encode($lengths)
          . create_huffman_entry($matches)
          . obh_encode($distances, \&mrl_compress_symbolic);
    };
    # Decompression
    my $dec = do {
        open my $fh, '<:raw', \$enc;
        my $literals  = string2symbols(bwt_decompress($fh));
        my $lengths   = fibonacci_decode($fh);
        my $matches   = decode_huffman_entry($fh);
        my $distances = obh_decode($fh, \&mrl_decompress_symbolic);
        lz77_decode($literals, $distances, $lengths, $matches);
    };- DEFLATE Compressed Data Format Specification
- GZIP file format specification
- ZLIB Compressed Data Format Specification
- BZIP2 Format Specification, by Joe Tsai:
- LZ4 Frame format
- LZ4 Block format
- Data Compression (Summer 2023) - Lecture 4 - The Unix 'compress' Program:
- Data Compression (Summer 2023) - Lecture 5 - Basic Techniques:
- Data Compression (Summer 2023) - Lecture 11 - DEFLATE (gzip):
- Data Compression (Summer 2023) - Lecture 12 - The Burrows-Wheeler Transform (BWT):
- Data Compression (Summer 2023) - Lecture 13 - BZip2:
- Data Compression (Summer 2023) - Lecture 15 - Infinite Precision in Finite Bits:
- Information Retrieval WS 17/18, Lecture 4: Compression, Codes, Entropy:
- COMP526 7-5 SS7.4 Run length encoding:
- COMP526 Unit 7-6 2020-03-24 Compression - Move-to-front transform:
- Basic arithmetic coder in C++:
Please report any bugs or feature requests to: https://github.com/trizen/Compression-Util.
Daniel "Trizen" Șuteu  <trizen@cpan.org>
Special thanks to professor Bill Bird for the awesome YouTube lectures on data compression.
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.38.2 or, at your option, any later version of Perl 5 you may have available.