Complete proof that odd perfect numbers do not exist. Structured by σ-function constraints, logical contradiction, and density elimination. 奇数完全数が存在しないことをσ関数の制約・背理法・密度除去により証明。構成不能性を三重に包囲。
-
Updated
Jul 2, 2025 - Python
Complete proof that odd perfect numbers do not exist. Structured by σ-function constraints, logical contradiction, and density elimination. 奇数完全数が存在しないことをσ関数の制約・背理法・密度除去により証明。構成不能性を三重に包囲。
Unified constructive and non-constructive proof of the Riemann Hypothesis. Prime density, ζ-function symmetry, and A-type structure ensure full consistency. リーマン予想に対する構成的・非構成的な統合証明。素数密度・ゼータ関数対称性・A型構成により完全整合を実現。
Add a description, image, and links to the non-constructive topic page so that developers can more easily learn about it.
To associate your repository with the non-constructive topic, visit your repo's landing page and select "manage topics."