Skip to content

Pixeltable — AI Data Infrastructure providing a declarative, incremental approach for multimodal workloads.

License

Notifications You must be signed in to change notification settings

scalytics/pixeltable-scalytics

 
 

Repository files navigation

Pixeltable Logo

The only open source Python library providing declarative data infrastructure for building multimodal AI applications, enabling incremental storage, transformation, indexing, retrieval, and orchestration of data.

License tests status nightly status stress-tests status PyPI Package My Discord (1306431018890166272)

Quick Start | Documentation | API Reference | Sample Apps | Discord Community


Installation

pip install pixeltable

Pixeltable replaces the complex multi-system architecture typically needed for AI applications (databases, file storage, vector DBs, APIs, orchestration) with a single declarative table interface that natively handles multimodal data like images, videos, and documents.

Demo

Pixeltable.2-min.Overview.mp4

Quick Start

With Pixeltable, you define your entire data processing and AI workflow declaratively using computed columns on tables. Focus on your application logic, not the data plumbing.

# Installation
pip install -qU torch transformers openai pixeltable

# Basic setup
import pixeltable as pxt

# Table with multimodal column types (Image, Video, Audio, Document)
t = pxt.create_table('images', {'input_image': pxt.Image})

# Computed columns: define transformation logic once, runs on all data
from pixeltable.functions import huggingface

# Object detection with automatic model management
t.add_computed_column(
    detections=huggingface.detr_for_object_detection(
        t.input_image,
        model_id='facebook/detr-resnet-50'
    )
)

# Extract specific fields from detection results
t.add_computed_column(detections_text=t.detections.label_text)

# OpenAI Vision API integration with built-in rate limiting and async managemennt
from pixeltable.functions import openai

t.add_computed_column(
    vision=openai.vision(
        prompt="Describe what's in this image.",
        image=t.input_image,
        model='gpt-4o-mini'
    )
)

# Insert data directly from an external URL
# Automatically triggers computation of all computed columns
t.insert(input_image='https://raw.github.com/pixeltable/pixeltable/release/docs/resources/images/000000000025.jpg')

# Query - All data, metadata, and computed results are persistently stored
# Structured and unstructured data are returned side-by-side
results = t.select(
    t.input_image,
    t.detections_text,
    t.vision
).collect()

What Happened?

  • Data Ingestion & Storage: References files (images, videos, audio, docs) in place, handles structured data.
  • Transformation & Processing: Applies any Python function (UDFs) or built-in operations (chunking, frame extraction) automatically.
  • AI Model Integration: Runs inference (embeddings, object detection, LLMs) as part of the data pipeline.
  • Indexing & Retrieval: Creates and manages vector indexes for fast semantic search alongside traditional filtering.
  • Incremental Computation: Only recomputes what's necessary when data or code changes, saving time and cost.
  • Versioning & Lineage: Automatically tracks data and schema changes for reproducibility. See below for an example that uses "time travel" to query an older version of a table.

Pixeltable can ingest data from local storage or directly from a URL. When external media files are referenced by URL, as in the insert statement above, Pixeltable caches them locally before processing. See the Working with External Files notebook for more details.

Where Did My Data Go?

Pixeltable workloads generate various outputs, including both structured outputs (such as bounding boxes for detected objects) and/or unstructured outputs (such as generated images or video). By default, everything resides in your Pixeltable user directory at ~/.pixeltable. Structured data is stored in a Postgres instance in ~/.pixeltable. Generated media (images, video, audio, documents) are stored outside the Postgres database, in separate flat files in ~/.pixeltable/media. Those media files are referenced by URL in the database, and Pixeltable provides the "glue" for a unified table interface over both structured and unstructured data.

In general, the user is not expected to interact directly with the data in ~/.pixeltable; the data store is fully managed by Pixeltable and is intended to be accessed through the Pixeltable Python SDK.

Key Principles

Unified Multimodal Interface: pxt.Image, pxt.Video, pxt.Audio, pxt.Document, etc. – manage diverse data consistently.

t = pxt.create_table(
   'media',
   {
       'img': pxt.Image,
       'video': pxt.Video
   }
)

Declarative Computed Columns: Define processing steps once; they run automatically on new/updated data.

t.add_computed_column(
   classification=huggingface.vit_for_image_classification(
       t.image
   )
)

Built-in Vector Search: Add embedding indexes and perform similarity searches directly on tables/views.

t.add_embedding_index(
   'img',
   embedding=clip.using(
       model_id='openai/clip-vit-base-patch32'
   )
)

sim = t.img.similarity("cat playing with yarn")

Incremental View Maintenance: Create virtual tables using iterators for efficient processing without data duplication.

# Document chunking with overlap & metadata and many more options to build your own iterator
chunks = pxt.create_view('chunks', docs,
   iterator=DocumentSplitter.create(
       document=docs.doc, 
       separators='sentence,token_limit',
       overlap=50, limit=500
   ))

# Video frame extraction  
frames = pxt.create_view('frames', videos,
   iterator=FrameIterator.create(video=videos.video, fps=0.5))

Seamless AI Integration: Built-in functions for OpenAI, Anthropic, Hugging Face, CLIP, YOLOX, and more.

# LLM integration (OpenAI, Anthropic, etc.)
t.add_computed_column(
   response=openai.chat_completions(
       messages=[{"role": "user", "content": t.prompt}], model='gpt-4o-mini'
   )
)

# Computer vision (YOLOX object detection)
t.add_computed_column(
   detections=yolox(t.image, model_id='yolox_s', threshold=0.5)
)

# Embedding models (Hugging Face, CLIP)
t.add_computed_column(
   embeddings=huggingface.sentence_transformer(
       t.text, model_id='all-MiniLM-L6-v2'
   )
)

Bring Your Own Code: Extend Pixeltable with UDFs, batch processing, and custom aggregators.

@pxt.udf
def format_prompt(context: list, question: str) -> str:
   return f"Context: {context}\nQuestion: {question}"

Agentic Workflows / Tool Calling: Register @pxt.udf, @pxt.query functions, or MCP tools as tools.

# Example tools: UDFs, Query functions, and MCP tools
mcp_tools = pxt.mcp_udfs('http://localhost:8000/mcp')  # Load from MCP server
tools = pxt.tools(get_weather_udf, search_context_query, *mcp_tools)

# LLM decides which tool to call; Pixeltable executes it
t.add_computed_column(
   tool_output=invoke_tools(tools, t.llm_tool_choice)
)

Data Persistence: All data, metadata, and computed results are automatically stored and versioned.

t = pxt.get_table('my_table')  # Get a handle to an existing table
t.select(t.account, t.balance).collect()  # Query its contents
t.revert()  # Undo the last modification to the table and restore its previous state

Time Travel: By default, Pixeltable preserves the full change history of each table, and any prior version can be selected and queried.

t.history()  # Display a human-readable list of all prior versions of the table
old_version = pxt.get_table('my_table:472')  # Get a handle to a specific table version
old_version.select(t.account, t.balance).collect()  # Query the older version

SQL-like Python Querying: Familiar syntax combined with powerful AI capabilities.

results = (
   t.where(t.score > 0.8)
   .order_by(t.timestamp)
   .select(t.image, score=t.score)
   .limit(10)
   .collect()
)

I/O & Integration: Export to multiple formats and integrate with ML/AI tools ecosystem.

# Export to analytics/ML formats  
pxt.export_parquet(table, 'data.parquet', partition_size_bytes=100_000_000)
pxt.export_lancedb(table, 'vector_db')

# DataFrame conversions
results = table.select(table.image, table.labels).collect()
df = results.to_pandas()                           # → pandas DataFrame  
models = results.to_pydantic(MyModel)              # → Pydantic models

# Specialized ML dataset formats
coco_path = table.to_coco_dataset()                # → COCO annotations
pytorch_ds = table.to_pytorch_dataset('pt')        # → PyTorch DataLoader ready

# ML tool integrations  
pxt.create_label_studio_project(table, label_config)  # Annotation
pxt.export_images_as_fo_dataset(table, table.image)   # FiftyOne

Key Examples

(See the Full Quick Start or Notebook Gallery for more details)

1. Multimodal Data Store and Data Transformation (Computed Column):

pip install pixeltable
import pixeltable as pxt

# Create a table
t = pxt.create_table(
    'films',
    {'name': pxt.String, 'revenue': pxt.Float, 'budget': pxt.Float},
    if_exists="replace"
)

t.insert([
    {'name': 'Inside Out', 'revenue': 800.5, 'budget': 200.0},
    {'name': 'Toy Story', 'revenue': 1073.4, 'budget': 200.0}
])

# Add a computed column for profit - runs automatically!
t.add_computed_column(profit=(t.revenue - t.budget), if_exists="replace")

# Query the results
print(t.select(t.name, t.profit).collect())
# Output includes the automatically computed 'profit' column

2. Object Detection with YOLOX:

pip install pixeltable pixeltable-yolox
import PIL
import pixeltable as pxt
from yolox.models import Yolox
from yolox.data.datasets import COCO_CLASSES

t = pxt.create_table('image', {'image': pxt.Image}, if_exists='replace')

# Insert some images
prefix = 'https://upload.wikimedia.org/wikipedia/commons'
paths = [
    '/1/15/Cat_August_2010-4.jpg',
    '/e/e1/Example_of_a_Dog.jpg',
    '/thumb/b/bf/Bird_Diversity_2013.png/300px-Bird_Diversity_2013.png'
]
t.insert({'image': prefix + p} for p in paths)

@pxt.udf
def detect(image: PIL.Image.Image) -> list[str]:
    model = Yolox.from_pretrained("yolox_s")
    result = model([image])
    coco_labels = [COCO_CLASSES[label] for label in result[0]["labels"]]
    return coco_labels

t.add_computed_column(classification=detect(t.image))

print(t.select().collect())

3. Image Similarity Search (CLIP Embedding Index):

pip install pixeltable sentence-transformers
import pixeltable as pxt
from pixeltable.functions.huggingface import clip

# Create image table and add sample images
images = pxt.create_table('my_images', {'img': pxt.Image}, if_exists='replace')
images.insert([
    {'img': 'https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Orange_tabby_cat_sitting_on_fallen_leaves-Hisashi-01A.jpg/1920px-Orange_tabby_cat_sitting_on_fallen_leaves-Hisashi-01A.jpg'},
    {'img': 'https://upload.wikimedia.org/wikipedia/commons/d/d5/Retriever_in_water.jpg'}
])

# Add CLIP embedding index for similarity search
images.add_embedding_index(
    'img',
    embedding=clip.using(model_id='openai/clip-vit-base-patch32')
)

# Text-based image search
query_text = "a dog playing fetch"
sim_text = images.img.similarity(query_text)
results_text = images.order_by(sim_text, asc=False).limit(3).select(
    image=images.img, similarity=sim_text
).collect()
print("--- Text Query Results ---")
print(results_text)

# Image-based image search
query_image_url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Huskiesatrest.jpg/2880px-Huskiesatrest.jpg'
sim_image = images.img.similarity(query_image_url)
results_image = images.order_by(sim_image, asc=False).limit(3).select(
    image=images.img, similarity=sim_image
).collect()
print("--- Image URL Query Results ---")
print(results_image)

4. Multimodal/Incremental RAG Workflow (Document Chunking & LLM Call):

pip install pixeltable openai spacy sentence-transformers
python -m spacy download en_core_web_sm
import pixeltable as pxt
import pixeltable.functions as pxtf
from pixeltable.functions import openai, huggingface
from pixeltable.iterators import DocumentSplitter

# Manage your tables by directories
directory = "my_docs"
pxt.drop_dir(directory, if_not_exists="ignore", force=True)
pxt.create_dir("my_docs")

# Create a document table and add a PDF
docs = pxt.create_table(f'{directory}.docs', {'doc': pxt.Document})
docs.insert([{'doc': 'https://github.com/pixeltable/pixeltable/raw/release/docs/resources/rag-demo/Jefferson-Amazon.pdf'}])

# Create chunks view with sentence-based splitting
chunks = pxt.create_view(
    'doc_chunks',
    docs,
    iterator=DocumentSplitter.create(document=docs.doc, separators='sentence')
)

# Explicitly create the embedding function object
embed_model = huggingface.sentence_transformer.using(model_id='all-MiniLM-L6-v2')
# Add embedding index using the function object
chunks.add_embedding_index('text', string_embed=embed_model)

# Define query function for retrieval - Returns a DataFrame expression
@pxt.query
def get_relevant_context(query_text: str, limit: int = 3):
    sim = chunks.text.similarity(query_text)
    # Return a list of strings (text of relevant chunks)
    return chunks.order_by(sim, asc=False).limit(limit).select(chunks.text)

# Build a simple Q&A table
qa = pxt.create_table(f'{directory}.qa_system', {'prompt': pxt.String})

# 1. Add retrieved context (now a list of strings)
qa.add_computed_column(context=get_relevant_context(qa.prompt))

# 2. Format the prompt with context
qa.add_computed_column(
    final_prompt=pxtf.string.format(
        """
        PASSAGES:
        {0}

        QUESTION:
        {1}
        """,
        qa.context,
        qa.prompt
    )
)

# 4. Generate the answer using the well-formatted prompt column
qa.add_computed_column(
    answer=openai.chat_completions(
        model='gpt-4o-mini',
        messages=[{
            'role': 'user',
            'content': qa.final_prompt
        }]
    ).choices[0].message.content
)

# Ask a question and get the answer
qa.insert([{'prompt': 'What can you tell me about Amazon?'}])
print("--- Final Answer ---")
print(qa.select(qa.answer).collect())

Notebook Gallery

Explore Pixeltable's capabilities interactively:

Topic Notebook Topic Notebook
Fundamentals Integrations
10-Min Tour Open In Colab OpenAI Open In Colab
Tables & Ops Open In Colab Anthropic Open In Colab
UDFs Open In Colab Together AI Open In Colab
Embedding Index Open In Colab Label Studio Visit Docs
External Files Open In Colab Mistral Open In Github
Use Cases Sample Apps
RAG Demo Open In Colab Multimodal Agent HF Space
Object Detection Open In Colab Image/Text Search GitHub App
Audio Transcription Open In Colab Discord Bot GitHub App

Maintaining Production-Ready Multimodal AI Apps is Still Too Hard

Building robust AI applications, especially multimodal ones, requires stitching together numerous tools:

  • ETL pipelines for data loading and transformation.
  • Vector databases for semantic search.
  • Feature stores for ML models.
  • Orchestrators for scheduling.
  • Model serving infrastructure for inference.
  • Separate systems for parallelization, caching, versioning, and lineage tracking.

This complex "data plumbing" slows down development, increases costs, and makes applications brittle and hard to reproduce.

Roadmap (2025)

Cloud Infrastructure and Deployment

We're working on a hosted Pixeltable service that will:

  • Enable Multimodal Data Sharing of Pixeltable Tables and Views | Waitlist
  • Provide a persistent cloud instance
  • Turn Pixeltable workflows (Tables, Queries, UDFs) into API endpoints/MCP Servers

Contributing

We love contributions! Whether it's reporting bugs, suggesting features, improving documentation, or submitting code changes, please check out our Contributing Guide and join the Discussions or our Discord Server.

License

Pixeltable is licensed under the Apache 2.0 License.

About

Pixeltable — AI Data Infrastructure providing a declarative, incremental approach for multimodal workloads.

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.2%
  • HTML 13.9%
  • Other 0.9%