Skip to content

prakashgbid/omnimind

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OmniMind - Human-like Thinking AI System

License: MIT Python 3.9+ CI/CD

OmniMind is an advanced AI system that mimics human cognitive processes through continuous thinking, learning, and reasoning capabilities. It provides a framework for building intelligent applications with human-like problem-solving abilities.

🌟 Features

  • Continuous Thinking Engine: Background cognitive processing that generates thoughts, connections, and insights
  • Adaptive Learning System: Learns from interactions and improves over time
  • Multi-Model Support: Works with Ollama (local), OpenAI, and other LLM providers
  • Modular Architecture: Clean, extensible design for easy customization
  • Comprehensive Testing: 200+ tests covering unit, integration, security, and performance
  • Production Ready: Pre-commit hooks, CI/CD pipeline, and quality gates

🚀 Quick Start

Prerequisites

  • Python 3.9 or higher
  • Ollama (for local models)
  • Git

Installation

  1. Clone the repository:
git clone https://github.com/prakashgbid/omnimind.git
cd omnimind
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment:
cp .env.example .env
# Edit .env with your configuration
  1. Run setup script:
./setup_local.sh

Usage

Run OmniMind in interactive mode:

python omnimind.py

Process a specific task:

python omnimind.py "Create a web scraper in Python"

With options:

python omnimind.py --model llama3.2:3b --verbose "Explain quantum computing"

📁 Project Structure

omnimind/
├── src/                  # Source code
│   ├── core/            # Core OSA modules
│   │   ├── osa.py       # Main OSA implementation
│   │   ├── logger.py    # Logging utilities
│   │   └── modules/     # Core modules
│   │       ├── thinking.py   # Thinking engine
│   │       ├── learning.py   # Learning system
│   │       └── architecture_reviewer.py
│   ├── providers/       # LLM providers
│   ├── agents/          # Agent system
│   └── utils/           # Utilities
├── tests/               # Test suite
│   ├── unit/           # Unit tests
│   ├── integration/    # Integration tests
│   ├── security/       # Security tests
│   ├── performance/    # Performance tests
│   └── regression/     # Regression tests
├── tools/              # Development tools
├── docs/               # Documentation
├── web/                # Web interface
└── omnimind.py         # Main entry point

🧪 Testing

Run all tests:

pytest tests/

Run specific test categories:

pytest tests/unit/          # Unit tests
pytest tests/security/      # Security tests
pytest tests/performance/   # Performance tests

Run with coverage:

pytest --cov=src tests/

🔧 Development

Setup Development Environment

# Install development dependencies
pip install -e ".[dev]"

# Install pre-commit hooks
pre-commit install

# Run quality checks
python tools/quality_checks.py

Code Quality

The project uses:

  • Black for code formatting
  • Flake8 for linting
  • MyPy for type checking
  • Pytest for testing
  • Pre-commit hooks for quality gates

🤝 Contributing

Please see docs/CONTRIBUTING.md for contribution guidelines.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🔗 Links

💡 Core Concepts

OmniMind implements several key cognitive concepts:

  1. Continuous Thinking: Background processing that generates thoughts and connections
  2. Pattern Recognition: Identifies and learns from patterns in data and interactions
  3. Contextual Memory: Maintains context across conversations and tasks
  4. Adaptive Learning: Improves performance based on feedback and experience
  5. Multi-Model Reasoning: Combines insights from multiple AI models

⚡ Performance

  • Supports concurrent task processing
  • Memory-efficient with automatic cleanup
  • Optimized for both local and cloud deployments
  • Benchmarked for speed and resource usage

🛡️ Security

  • Input validation and sanitization
  • Protection against injection attacks
  • Secure handling of API keys and credentials
  • Regular security audits via automated testing

Built with passion for advancing AI capabilities 🚀