Skip to content

patbi/AI_Security_Engineers_Roadmap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

WE COVER,

Best Roadmap To Learn Python Programming

Table of Contents

  1. Module 1: Python Basics

    • Variables in Python
    • Strings and Variables in Python
    • Accepting input from users in Python
    • Operators in Python
    • If statement
    • if else statement
    • elif statement in Python
    • For loop in Python
    • while loop in Python
    • Break statement in Python
    • continue statement
    • String properties in Python
    • List [] in Python
    • List [] methods in Python
    • Tuples in Python
    • Dictionaries in Python
    • Functions in Python
    • Modules in Python
    • User define functions with argument
    • Round of Modules and Functions
    • Time Module in Python
    • Example of time module in Python
  2. Module 2: OOP Concepts

    • Types of variables & methods
    • Classes
    • Objects
    • Inheritance
    • Encapsulation
    • Polymorphism
    • Abstraction
    • Interface
  3. Module 3: Package Managers

    • Pip
    • Conda
    • UV
  4. Module 4: DSA

    • Arrays
    • Linked lists
    • Stacks
    • Queues
    • Binary search trees
    • Balanced binary trees
    • Heaps
    • Dictionaries
    • Tries
    • Graph algorithms
      • Graph traversal algorithms: BFS and DFS
      • Shortest paths
      • Spanning trees
    • Hash Tables
    • Recursion
    • Sorting algorithms
  5. Module 5: Linux

  6. Module 6: Automation

    • File Manipulation
    • Web Scraping
    • GUI Automation
    • Network Automation
  7. Module 7: Types of Testing

    • Unit Testing
    • Integration Testing
    • End-to-end testing
    • Load Testing
      • With Locust
  8. Module 8: Advanced/pythonbooks

    • Pip in python
    • What is PYTHONPATH
    • Enumeration | Enumerate in python
    • Deep Copy and Shallow Copy in python
    • What is Python environments | What is the Need of Python Virtual Environments
    • Python Virtual Environment | How to Create Python Virtual Environment
    • List Comprehansion in Python | List Comprehension Python
    • List Comprehension in Python | Chaining in python | If-Else in List Comprehension Python
    • Dictionary Comprehension in Python
    • List Comprehension in Python | if-elif-else in List Comprehension
    • How to Install Pycharm on Windows 10
    • Function in Python
    • How to Create Function in Python
    • Advantages of Functions
    • Difference Between Parameters and Arguments
    • Local Variables in Python
    • Global Variables in Python
    • Everything about global keyword and UnboundLocalError in Python
    • return Statement in Python | Returning Value From Function
    • Positional Arguments in Python | Types of Arguments
    • Keyword Arguments in Python | Default Arguments in Python
    • Variable Length Arguments in Python | Types of Arguments in Python
    • Lambda Function in Python | Anonymous Function in Python
    • Nested Lambda Function in Python
    • IIFE Function in Python
    • First Class Functions in Python
    • Function as Parameter | Function as Argument
    • Returning Function from Function in Python | How to return function
    • Globals function in python | globals() in python
    • Filter() in python | Higher Order functions in python
    • Filter() in python Using Lambda() | Higher Order() in python
    • Filter() example | filter() in python
    • Map() in python | Higher Order() in python
    • Reduce() | Higher Order() in python
    • Recursion in python | What is recursion
    • Recursion in python | Factorial Program using recursion
    • Recursion in python | What is Direct revursion in python | Types of recursion
    • Fibonacci Series using recursion
    • Namespace in python | What is that
    • Nonlocal variable in python | nonlocal keyword in python
    • Closures in python | what is that
    • Decorator in python | Multiple Decorators on a () |
    • Smart division using decorator
    • If__name__=='main'|__main__Usage in Python
    • Exception Handling in python | Try-Except block
    • Exception Handling in python | Printing Exception information in output
    • Exception Hierarchy in python
    • Raise keyword in python | raise Statement in python
    • Creating user-defined exceptions in python
    • User defined exception example
    • Use exception Handling
    • Excepthook in python
    • Exception Handling best practices
    • Pickling and Unpickling in Python
    • What is JSON Data Format | JSON in python | Working With JSON in python
    • JSON to python dictionary conversion
    • HAndling constants in python projects
    • Memory management in python | Stack vs Dynamic Memory
    • Reference counting in python
    • Multithreading in python | Types of Multi Tasking
    • What is Main Thread in python
    • How to create threads in python
    • Creating threads for methods
    • Create threads by extending thread class | run() method
    • Thread Names, id's | Threading in python
    • Built in functions in multithreading
    • Join method in multithreading
    • Why to use multithreading
    • Race condition in python | What is that ?
    • Locking mechanism in multithreading - python
    • Rlock in multithreading | thread synchronization
    • Need of Rlock in python
    • Semaphore in python | Bounded semaphore in python
    • Exception in multithreading python
    • Lifecycle of thread in python
    • Thread communication in python | condition object | queue object
    • What is daemon thread in python
    • Timer object in python
    • Barrier object in multithreading
    • What is Logging in python
    • Logging levels | How to Log messages in python
    • How to format log messages
    • Creating Logger Object
    • Logging Exception details in python
    • Iterator in python
    • Generators in python
    • Fibonacci series using Generators
    • Chaining Generators in python
    • Python - MySQL | How to install MySQL Connector
    • How to Create Connection to MySQL Using python
    • Check Connection Between python and MySQL | Close Connection
    • Execute Method in python | Cursor Object in python
    • Show Databases using python
    • Python Databases Connectivity
    • Commit and Rollback in python - MySQL | Insert Records into MySQL Table using python Script
    • MySQL - Update Table data - Python
    • Fetchone and fetchmany method in python
    • Python MySQL Execute Parameterized Query using Prepared Statement
    • Python MySQL Execute Parameterized Query Example
    • Python MySQL Execute Parameterized Query for Dynamic Program
    • Insert JSON Data Into MySQL Table
    • Difference Between MVT and MVC | How Django Works | MVT vs MVC
    • Mutable Default Arguments in python
    • Time module in python
    • Datetime module in python
    • Timedelta in python
    • __all__in Python | Importing Module in Python
    • init.py in Python | Python Packages
    • What is Regex and Applications
    • Regex in Python | Compile() Function | Searching Function
    • Character classes in regex
    • Mixing Different Types of Arguments in Python
    • Use of Lambda () | Lambda() with sorted()
    • Implementing IIFE() in Python
    • Top 21 Special Methods and Attributes in Python
  9. Module 9: Databases

    • Mastery MongoDB
    • Mastery SQL
    • Mastery Firebase
    • ETC...& Future Databases
  10. Module 10: Web Frameworks

  11. Module 11: Data Modeling & Pipelines

  12. Module 12: Data/ML/AI/IoT Tools & Best Practices Overview

  13. Module 13: Data science

  14. Module 14: Machine Learning - Choosing The Right Algorithms

    • ๐—ฆ๐˜‚๐—ฝ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐˜€๐—ฒ๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด
      • (Data With Label)
        • Classification
          • Logistic Regression
          • Naive Bayes Classifier
          • K-Nearest Neighbour (KNN)
          • Support Vector Machine (SVM)
          • Random Forest
          • Decision Tree
            • Examples:
              • Email Spam detection
              • Speech recognition
        • Regression
          • Linear Regression
          • Ridge Regression
          • Ordinary least Squares Regression
          • Stepwise Regression
            • Examples:
              • Stock Market prediction
              • Rainfall Prediction
    • ๐—จ๐—ป๐˜€๐˜‚๐—ฝ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐˜€๐—ฒ๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด
      • (Data without Label)
        • Clustering
          • K-means clustering
          • K-median
          • Hierarchical clustering
          • Expectation Maximization
            • Examples:
              • Identifying fake news
              • Document analysis
        • Association Analysis
          • APRIORI Algorithm
          • Eclat
          • FP-Growth (Frequent Pattern growth)
            • Examples:
              • Market Basket Analysis
        • Dimensionality Reduction
          • Feature Extraction
            • Principal Component Analysis
          • Feature Selection
            • Wrapper, Filter & Embedded Method
              • Examples:
                • Analysis of written texts and DNA Method microarray data
        • Anomaly Detection
          • Z-score Algorithm
          • Isolation Forest Algorithm
    • ๐—ฆ๐—ฒ๐—บ๐—ถ-๐—ฆ๐˜‚๐—ฝ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐˜€๐—ฒ๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด
      • Classification
        • Self-Training
      • Regression
        • Co-Training
    • ๐—ฅ๐—ฒ๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด
      • (Sate and Action)
        • Model-Free
          • Q-Learning
          • Hybrid
          • Policy optimisation
        • Model-Based
          • Learn the Model
          • Given the Model
            • Examples:
              • Multi-agent System
              • Motion Planning
              • Navigation
  15. Module 15: Deep Learning (DL) & Neural Networks (NN)

  16. Module 16: The Backbone of Computer Vision

    • KEY LIBRARIES

      • OpenCV -Load image
        • Show image
        • Convert to Grayscale
      • Pillow (PIL) : simple image manipulation
        • Open image
      • TensorFlow PyTorch: Deep Learning frameworks for classification, detection, segmentation
    • PREPROCESSING TECHNIQUES

      • Resizing:
      • Normalization
      • Blurring
        • Global
        • Adaptive
      • Edge Detection
        • Canny
    • FEATURE DETECTION

      • SIFT/ORB: keypoints & descriptors for matching
      • HOG: Histogram of Oriented Gradients (used for detecting objects like people)
    • SEGMENTATION

      • Contours
      • Watershed
    • OBJECT DETECTION

      • Haar Cascades: Pre-trained classifiers (e.g., for faces)
      • YOLO: Real-time object detection
      • SSD: Efficient, single-shot object detection
    • NEURAL NETWORKS

      • CNNs (Convolutional Neural Networks)
        • Used for image classification and object recognition
        • key layers: Convolution, Pooling, Fully Connected
      • Pre-trained models
        • Fine-tune VGG, ResNet, or Inception for your task
    • OBJECT TRACKING

      • MeanShift: Moves window to highest pixel density
      • CamShift: Adjusts window size dynamically for tracking
    • IMAGE AUGMENTATION

      • Increase dataset size by applying transformations
      • Rotation, Flipping, Scaling, Cropping (to improve robustness)
  17. Module 17: Documentation Before / LLM - Generative AI - AI Agents - Agentic AI - Agentic RAG...

AI Agents are basically 90% Software engineering and only 10% AI

Preview

  1. Module 18: All About LLM - Generative AI - AI Agents - Agentic AI - Agentic RAG...

1๏ธโƒฃ LoRA & qLoRA fine-tuning Learn low-rank adaptation to fine-tune massive models while keeping GPU and memory usage in check. https://lnkd.in/dxAfNJjP https://lnkd.in/dcfhk4YB

2๏ธโƒฃ Reinforcement Learning from Human Feedback (RLHF) Understand how to align model behavior with human expectations using curated reward signals. https://lnkd.in/da4qf5JV https://lnkd.in/drEbQ4x2

3๏ธโƒฃ Reinforcement Learning from Verifiable Rewards (RLVR) Use simulated or programmatic reward models when human feedback is too expensive. https://lnkd.in/dFBgDAyd

4๏ธโƒฃ RAG Fundamentals Learn how to build Retrieval-Augmented Generation systems- ingest documents, create embeddings, stitch context, and prompt LLMs. https://lnkd.in/dFkgD6RQ https://lnkd.in/d7v6DzEG

5๏ธโƒฃ Advanced RAG Architectures Master multi-hop retrieval, hybrid sparse-dense search, and complex reranking for multi-document use cases. https://lnkd.in/dUrAz2D3

6๏ธโƒฃ Embedding Models & Vector Databases Benchmark sentence encoders, tune indexes (FAISS/Pinecone), and understand latency vs recall trade-offs. https://lnkd.in/d8zeWbmn https://learn.pinecone.io/

7๏ธโƒฃ Prompt Engineering & Chain-of-Thought Design prompts that guide reasoning step-by-step, manage templates, and dynamically inject context. https://lnkd.in/djbJD578 https://lnkd.in/d9M75H_i

8๏ธโƒฃ MCP & Agent-to-Agent Integration Use Model Context Protocol (MCP) to coordinate LLMs with APIs and other agents for seamless A2A handoffs. https://lnkd.in/dfjvxhvP https://lnkd.in/dJ5NWuaK

9๏ธโƒฃ Long-Context Window Strategies Handle 100k+ token sequences using smart chunking, hierarchical retrieval, and memory-augmented architectures. https://lnkd.in/djgkXGaZ

๐Ÿ”Ÿ Model Efficiency: Quantization & Distillation Shrink models with post-training quantization (4/8-bit), pruning, and knowledge distillation for faster, cheaper inference. https://lnkd.in/d2iurEyv

1๏ธโƒฃ1๏ธโƒฃ LLMOps & Model Monitoring Build CI/CD pipelines for LLM deployment, track drift, monitor hallucinations, and set up alerting for cost or performance issues. https://lnkd.in/dxik45e6

1๏ธโƒฃ2๏ธโƒฃ Evaluation & Benchmarking Measure with perplexity, ROUGE, F1, and human evaluations. Automate benchmarks to compare models at scale. https://lnkd.in/dP_NJXg9

Other Resources

MCP with Anthropic: https://tinyurl.com/2tjtatkc

Building Vector Databases with Pinecone: https://tinyurl.com/mra8tpda

Vector Databases: https://tinyurl.com/56bjv6yw

Agent Memory: https://tinyurl.com/mk9rdefz

Deep Learning AI's RAG course: https://tinyurl.com/2s4bs3fd

Building and Evaluating RAG apps: https://tinyurl.com/mryh4bez

Building Browser Agents: https://tinyurl.com/5mtrk33t

Evaluating AI Agents: https://tinyurl.com/2kb6h3wz

Computer Use with Anthropic: https://tinyurl.com/5n6jsrhy

Multi-Agent Use: https://tinyurl.com/5n756x9k

Improving LLM Accuracy: https://tinyurl.com/43be9h9p

Agent Design Patterns: https://tinyurl.com/mrxx7f6h

Multi Agent Systems: https://tinyurl.com/2s37f3sn

Berkeley Agent MOOC: https://tinyurl.com/4fwbj3n5

Berkeley Advanced Agents MOOC: https://tinyurl.com/3em94nyw

  1. Module 19: Personal /Professional Projects

  2. Module 20: Bonus: Robotics

    • Robotics
  3. Module 21: Security

Author

- Patrick Biyaga

Looking for support

For questions and support please join our platform.