If you will be delivering this session, check the session-delivery-sources folder for slides, scripts, and other resources.
See how GitHub Copilot acts as an AI agent in real-world development workflows—planning, executing multi-step tasks, and integrating seamlessly into engineering processes. Discover how Copilot can boost team productivity, accelerate software development, and support best practices. Go beyond autocomplete with practical, real-world examples that demonstrate measurable impact within your organization.
By the end of this session, learners will be able to:
- Use GitHub Copilot Agent mode within modern development workflows.
- Assign issues and review Pull Requests from the Coding agent as an agent co-worker, scaling your team.
- Apply GitHub Copilot custom instructions to ensure secure and high quality results
- Use built-in and external MCP Servers to integrate powerful services that 'just work' with GitHub Copilot
- Visual Studio Code as an AI code editor
- GitHub Copilot as the AI that builds with you
- MCP Servers to extend agent mode
Resources | Links | Description |
---|---|---|
Copilot Adventures | https://github.com/microsoft/CopilotAdventures | GitHub Copilot coding adventures |
GitHub Copilot in VS Code | Documentation | GitHub Copilot Documentation |
Visual Studio Code | https://www.youtube.com/code | VS Code, the Open Source AI code editor YouTube |
Learn at AI Tour | https://aka.ms/LearnAtAITour | Continue learning on Microsoft Learn |
Additional Languages Coming Soon
![]() Liam Hampton 📢 |
![]() Julia Muiruri 📢 |
Microsoft is committed to helping our customers use our AI products responsibly, sharing our learnings, and building trust-based partnerships through tools like Transparency Notes and Impact Assessments. Many of these resources can be found at https://aka.ms/RAI. Microsoft’s approach to responsible AI is grounded in our AI principles of fairness, reliability and safety, privacy and security, inclusiveness, transparency, and accountability.
Large-scale natural language, image, and speech models - like the ones used in this sample - can potentially behave in ways that are unfair, unreliable, or offensive, in turn causing harms. Please consult the Azure OpenAI service Transparency note to be informed about risks and limitations.
The recommended approach to mitigating these risks is to include a safety system in your architecture that can detect and prevent harmful behavior. Azure AI Content Safety provides an independent layer of protection, able to detect harmful user-generated and AI-generated content in applications and services. Azure AI Content Safety includes text and image APIs that allow you to detect material that is harmful. Within Azure AI Foundry portal, the Content Safety service allows you to view, explore and try out sample code for detecting harmful content across different modalities. The following quickstart documentation guides you through making requests to the service.
Another aspect to take into account is the overall application performance. With multi-modal and multi-models applications, we consider performance to mean that the system performs as you and your users expect, including not generating harmful outputs. It's important to assess the performance of your overall application using Performance and Quality and Risk and Safety evaluators. You also have the ability to create and evaluate with custom evaluators.
You can evaluate your AI application in your development environment using the Azure AI Evaluation SDK. Given either a test dataset or a target, your generative AI application generations are quantitatively measured with built-in evaluators or custom evaluators of your choice. To get started with the azure ai evaluation sdk to evaluate your system, you can follow the quickstart guide. Once you execute an evaluation run, you can visualize the results in Azure AI Foundry portal .