-
-
Notifications
You must be signed in to change notification settings - Fork 108
01 Installation Guide
Version: 6.3.3+
Last Updated: 2025-08-23
Supports: SQLite-vec (recommended), ChromaDB, Cloudflare backends
This guide consolidates all installation methods for MCP Memory Service across all platforms and use cases.
The fastest way to get started - automatically detects your system and configures everything:
# Clone the repository
git clone https://github.com/doobidoo/mcp-memory-service.git
cd mcp-memory-service
# Run the universal installer
python install.py
What this does:
- ✅ Detects your operating system and hardware
- ✅ Installs optimal dependencies for your system
- ✅ Configures the best storage backend (SQLite-vec recommended)
- ✅ Sets up environment variables
- ✅ Generates secure API key
- ✅ Optionally installs as system service
- Python: 3.10 or newer (3.11+ recommended)
- Memory: 4GB RAM minimum (8GB+ recommended)
- Storage: 2GB free space
- OS: Windows 10+, macOS 10.15+, or Linux (Ubuntu 18.04+)
🖥️ Legacy Hardware (2013-2017 Intel Macs, older systems)
python install.py --legacy-hardware
- Uses SQLite-vec backend (lightweight)
- CPU-only inference optimization
- Reduced memory footprint
🚀 Modern Hardware (M1/M2/M3 Macs, GPU systems)
python install.py
- Uses optimal backend for your system
- GPU acceleration when available
- Full feature set enabled
For using MCP Memory Service with Claude Desktop:
# Install with MCP protocol support
python install.py --claude-desktop
# Follow the output instructions to update your Claude Desktop config
# Typically adds this to ~/.claude/config.json:
{
"mcpServers": {
"memory": {
"command": "uv",
"args": ["--directory", "/path/to/mcp-memory-service", "run", "memory", "server"],
"env": {
"MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec"
}
}
}
}
For Claude Code with memory awareness:
# Install with Claude Code hooks
python install.py --claude-code
# Install memory awareness hooks
python scripts/install_claude_hooks.py
See our Claude Code Memory Awareness Guide for complete setup.
For REST API access and web interface:
# Install with HTTP API enabled
python install.py --http-api
# Start the web server
uv run memory server --http
Access at: https://localhost:8000
For always-on background operation:
# Install as system service
python install.py --service
# Or install manually after regular installation:
python scripts/install_service.py
# For older Intel Macs - optimized for compatibility
python install.py --legacy-hardware
# If using Homebrew Python (recommended for older systems)
python install.py --legacy-hardware --homebrew-torch
# Standard installation with MPS acceleration
python install.py
# Verify MPS acceleration is working
python -c "import torch; print('MPS available:', torch.backends.mps.is_available())"
macOS-Specific Notes:
- Uses MPS acceleration on Apple Silicon
- Automatically handles Homebrew PyTorch if needed
- LaunchAgent service integration for auto-start
# Standard Windows installation
python install.py
# For service installation (requires Administrator):
python install.py --service
Windows-Specific Features:
- Windows Service integration
- DirectML acceleration support (where available)
- PowerShell automation scripts included
# Install dependencies first
sudo apt update
sudo apt install python3.10 python3.10-venv python3-pip git
# Run installer
python3 install.py
# For system service
sudo python3 install.py --service
# For CUDA acceleration (if available)
python install.py --cuda
# For ROCm acceleration (AMD GPUs)
python install.py --rocm
Linux-Specific Features:
- Systemd service integration
- CUDA/ROCm GPU acceleration
- Multi-user service configuration
For MCP Protocol (Claude Desktop, VS Code):
docker-compose up -d
For HTTP API (REST API, Web Dashboard):
docker-compose -f docker-compose.http.yml up -d
curl http://localhost:8000/api/health
Create .env
file for customization:
# Storage backend
MCP_MEMORY_STORAGE_BACKEND=sqlite_vec
# HTTP API settings
MCP_HTTP_ENABLED=true
MCP_HTTP_PORT=8000
# Security
MCP_API_KEY=your-secure-api-key-here
- Best for: Single-user, local development, high performance
- Performance: ~5ms query time
- Setup: Default in v6.3.0+
export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec
- Best for: Team collaboration, multiple clients
- Performance: ~15ms query time
- Setup:
export MCP_MEMORY_STORAGE_BACKEND=chroma
- Best for: Production deployments, global scale
- Performance: Network dependent
- Setup: Requires API tokens
export MCP_MEMORY_STORAGE_BACKEND=cloudflare
export CLOUDFLARE_API_TOKEN="your-token"
export CLOUDFLARE_ACCOUNT_ID="your-account"
# Automatic platform detection
python scripts/install_service.py
# Service management commands
python scripts/install_service.py --status # Check status
python scripts/install_service.py --start # Start service
python scripts/install_service.py --stop # Stop service
python scripts/install_service.py --restart # Restart service
Windows:
net start MCPMemoryService
net stop MCPMemoryService
sc query MCPMemoryService
macOS:
launchctl load ~/Library/LaunchAgents/com.mcp.memory-service.plist
launchctl unload ~/Library/LaunchAgents/com.mcp.memory-service.plist
launchctl list | grep com.mcp.memory-service
Linux:
systemctl --user start mcp-memory
systemctl --user stop mcp-memory
systemctl --user status mcp-memory
Essential configuration options:
# Storage Backend
export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec # sqlite_vec, chroma, or cloudflare
# HTTP API
export MCP_HTTP_ENABLED=true
export MCP_HTTP_PORT=8000
export MCP_HTTPS_ENABLED=true
# Security
export MCP_API_KEY="$(openssl rand -base64 32)"
# Service Discovery
export MCP_MDNS_ENABLED=true
export MCP_MDNS_SERVICE_NAME=memory
# Performance
export MAX_RESULTS_PER_QUERY=10
export SIMILARITY_THRESHOLD=0.7
Configuration is stored in:
-
Config:
~/.mcp_memory_service/service_config.json
-
Logs:
~/.mcp_memory_service/logs/
- Data: Platform-specific (see storage backend docs)
# Test the installation
python scripts/verify_environment.py
# Test memory operations
uv run memory store "Test memory for installation verification"
uv run memory recall "test installation"
uv run memory health
# Health check
curl -k https://localhost:8000/api/health
# Store a memory
curl -k -X POST https://localhost:8000/api/memories \
-H "Content-Type: application/json" \
-d '{"content": "API test memory"}'
# Search memories
curl -k -X POST https://localhost:8000/api/search \
-H "Content-Type: application/json" \
-d '{"query": "API test"}'
Installation Fails with Permission Errors:
# Use virtual environment
python -m venv venv
source venv/bin/activate # Linux/macOS
# or
venv\Scripts\activate.bat # Windows
python install.py
Port Already in Use:
# Change the port
export MCP_HTTP_PORT=8001
Service Won't Start:
# Check logs
tail -f ~/.mcp_memory_service/logs/mcp-memory-service.log
# Verify configuration
python scripts/verify_environment.py
Dependencies Issues:
# Reinstall dependencies
pip install --force-reinstall -e .
macOS: See macOS Intel Legacy Guide for older Mac issues
Windows: Check Windows Service logs in Event Viewer
Linux: Use journalctl --user -u mcp-memory
for service logs
After successful installation:
- 🧠 Claude Code Integration - Complete development workflow
- ⚡ Quick Reference - Essential commands
- 🏷️ Tag Management - Organize your memories
- 🔧 Troubleshooting - Fix common issues
- 🚀 Performance Optimization - Speed improvements
- 🔧 Issues: GitHub Issues
- 💬 Discussions: GitHub Discussions
- 📖 Documentation: Wiki Home
- 🔍 Troubleshooting: Troubleshooting Guide
This guide consolidates information from multiple previous installation guides for a single, comprehensive reference.