A production-grade, cost-aware, multi-agent chatbot platform built with:
- Node.js + Express + TypeScript
- Redis, Supabase (pgvector), BullMQ
- Railway CI/CD + Scaling + Metrics
- OpenAI GPT + Token Optimization
✅ Modular Architecture (agents, routes, services)
✅ Multi-Agent Support (support, sales, etc.)
✅ Semantic Memory via Supabase pgvector
✅ Redis Caching + Rate Limiting
✅ BullMQ Job Queues & Workers
✅ Prometheus Metrics + Winston Logging
✅ Adaptive Model Usage & Token Forecasting
✅ Railway-ready Deployment Templates
✅ Future Samples: Autonomous Loops, Multimodal Input, Agent Collaboration
chatbot-scalable-infra/
├── agents/ # Agent logic (support, sales)
├── services/ # OpenAI, memory, Redis, adaptive logic
├── routes/ # API endpoints
├── queue/ # BullMQ queue
├── workers/ # Background job processors
├── utils/ # Logger, alerts, token tracker
├── metrics/ # Prometheus metrics
├── scripts/ # Cost dashboards, token usage
├── samples/ # Future agent/LLM patterns
├── .env.example # Env var template
├── README.md
Explore samples in /samples
for:
- Autonomous agent loops
- Multi-agent coordination
- Multimodal interfaces (vision, voice)
- Function calling & API integration
- Personalized replies
Easily deploy using Railway:
This project is based on the “Scaling Chatbots” blog article series by Darshan Jitendra Chobarkar.