reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction
- Published in BMC Bioinformatics
reactIDR is a Python package that evaluates statistical reproducibility across replicated high-throughput RNA structure profiling data (e.g., PARS, SHAPE-Seq, icSHAPE, DMS-Seq) to robustly infer loop and stem probabilities.
- Read count data (tabular format)
- PARS
- SHAPE-Seq
- icSHAPE
- DMS-Seq (assumed to enrich A/C only)
- Posterior probability for each site:
- Loop (signal enriched in "case")
- Stem (signal enriched in "control")
- IDR (Irreproducible Discovery Rate)
- Hidden Markov Model
python >= 3.9
numpy >= 2.0.2
scipy >= 1.13.1
pandas >= 2.2.3
Optional packages for visualization:
seaborn
jupyter notebook
pip install reactIDR
Test datasets are provided in the example and csv_example directories. To run a demo using CSV input:
git clone https://github.com/carushi/reactIDR
cd reactIDR/csv_example
python -c "import reactIDR; reactIDR.run_reactIDR([
'-e 0',
'--csv',
'--global',
'--case', 'case.csv',
'--output', 'test.csv',
'--param', 'default_parameters.txt'
])"
📚 More usage examples and options are available in the Wiki.
Script | Description |
---|---|
read_collapse.py |
Collapse PCR duplicates and trim barcodes (assumes gawk ) |
read_truncate.py |
Extract consistent paired-end reads |
bed_to_pars_format.py |
Convert BED coverage to PARS-style format based on annotations |
format: NAME 0;1;2;3;..... | |
tab_to_csv.py |
Append raw count data to output CSV |
-
R. Kawaguchi, H. Kiryu, J. Iwakiri and J. Sese. "reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction" BMC Bioinformatics 20 (Suppl 3) :130 (2019)" ー Selected for APBC '19 proceedings
-
- Convert bam to read count data
- Find scripts and how to use at https://github.com/carushi/RT_end_counter
-
IDR
- Li, Qunhua, et al. "Measuring reproducibility of high-throughput experiments", The annals of applied statistics, 2011.
- IDR in Python
- IDR in R
- apply to MaP analyses