Skip to content

Evaluation of the statistical reproducibility of high-throughput structural analyses for a robust RNA reactivity classification

License

Notifications You must be signed in to change notification settings

carushi/reactIDR

Repository files navigation

reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction

reactIDR is a Python package that evaluates statistical reproducibility across replicated high-throughput RNA structure profiling data (e.g., PARS, SHAPE-Seq, icSHAPE, DMS-Seq) to robustly infer loop and stem probabilities.


📥 Input

  • Read count data (tabular format)
    • PARS
    • SHAPE-Seq
    • icSHAPE
    • DMS-Seq (assumed to enrich A/C only)

📤 Output

  • Posterior probability for each site:
    • Loop (signal enriched in "case")
    • Stem (signal enriched in "control")

🧠 Algorithm

  • IDR (Irreproducible Discovery Rate)
  • Hidden Markov Model

🔧 Requirements

python >= 3.9
numpy >= 2.0.2
scipy >= 1.13.1
pandas >= 2.2.3

Optional packages for visualization:

seaborn
jupyter notebook

🚀 Installation

pip install reactIDR

▶️ Getting Started

Test datasets are provided in the example and csv_example directories. To run a demo using CSV input:

git clone https://github.com/carushi/reactIDR
cd reactIDR/csv_example
python -c "import reactIDR; reactIDR.run_reactIDR([
  '-e 0',
  '--csv',
  '--global',
  '--case', 'case.csv',
  '--output', 'test.csv',
  '--param', 'default_parameters.txt'
])"

📚 More usage examples and options are available in the Wiki.

🛠️ Scripts

Script Description
read_collapse.py Collapse PCR duplicates and trim barcodes (assumes gawk)
read_truncate.py Extract consistent paired-end reads
bed_to_pars_format.py Convert BED coverage to PARS-style format based on annotations
format: NAME 0;1;2;3;.....
tab_to_csv.py Append raw count data to output CSV

📖 Reference

TODO

  • apply to MaP analyses

About

Evaluation of the statistical reproducibility of high-throughput structural analyses for a robust RNA reactivity classification

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published