Base BackBone, Paper Link: RadioDiff, Code Link: GitHub
PINN Enhanced with Helmholtz Equation, Paper Link: RadioDiff-$k^2$, Code Link: GitHub
Efficiency Enhanced RadioDiff, Paper Link: RadioDiff-Turbo
Indoor RM Construction with Physical Information, Code Link: GitHub
3D RM with DataSet, Paper Link: RadioDiff-3D, Code Link: GitHub
Sparse Measurement for RM ISAC, Paper Link: RadioDiff-Inverse
Sparse Measurement for NLoS Localization, Paper Link: RadioDiff-Loc
For more RM information, please visit the repo of Awesome-Radio-Map-Categorized.
An intelligent radio-map reconstruction system based on diffusion models. 📶✨
RadioDiff-k² is an advanced radio-map reconstruction project that leverages conditional diffusion models to generate high-quality radio-coverage maps from sparse measurements. The project serves 5G and 6G network planning, propagation prediction, and network optimization. 🚀📡
- DPM — deterministic propagation modeling with high speed and accuracy
- IRT4 — iterative ray tracing with high-precision prediction
- DPMCARK — vehicle-aware enhancement for urban mobility scenes 🚗📡
- Conditional diffusion model built on Swin Transformer
- VAE encoder for compact and efficient representation
- Multi-scale processing for flexible resolution support 🧠🧩
- Building layouts for realistic urban environments
- Transmitter positions to capture source attributes
- Vehicle data for dynamic occlusions
- k² features to encode physical propagation traits 🏙️📍🚘📐
Python >= 3.8
CUDA >= 11.0
PyTorch >= 1.12
RadioDiff-k2/
├── 📋 configs/ # Configuration files
│ ├── BSDS_sample_*.yaml # Inference configs
│ └── BSDS_train_*.yaml # Training configs
├── 🧠 denoising_diffusion_pytorch/ # Diffusion core
├── 🔧 lib/ # Utilities
│ ├── loaders.py # Data loaders
│ └── modules.py # Network modules
├── 💾 model/ # Pretrained models
├── 📊 inference/ # Inference results
│ ├── DPMCARK/ # DPMCARK outputs
│ ├── DPMK/ # DPMK outputs
│ └── IRT4K/ # IRT4K outputs
├── 📈 metrics/ # Evaluation metrics
├── ⚡ TFMQ/ # Quantization and efficiency
├── 🚀 train_cond_ldm.py # Training script
├── 🔮 sample_cond_ldm.py # Inference script
├── 🏗️ train_vae.py # VAE training
├── 🧮 caculate_k.py # k² feature computation
├── 🎯 demo.py # Usage examples
├── 📦 requirements.txt # Dependencies
└── 📖 README.md # Project docs
RadioMapSeer/
├── 📁 png/
│ ├── buildings_complete/ # Building images 256x256
│ ├── antennas/ # Transmitter positions 256x256
│ └── cars/ # Vehicle information optional
├── 📁 gain/
│ ├── DPM/ # DPM simulation results
│ ├── IRT4/ # IRT4 simulation results
│ └── IRT4_k2_neg_norm/ # k² feature maps
└── 📁 metadata/ # Meta files
# Run the k² feature computation script
python caculate_k.py
# Train the main model
python train_cond_ldm.py --cfg configs/BSDS_train_DPMK.yaml
python train_cond_ldm.py --cfg configs/BSDS_train_DPMCARK.yaml
python train_cond_ldm.py --cfg configs/BSDS_train_IRT4K.yaml
# DPMCARK inference
python sample_cond_ldm.py --cfg configs/BSDS_sample_DPMCARK.yaml
# DPMK inference
python sample_cond_ldm.py --cfg configs/BSDS_sample_DPMK.yaml
# IRT4K inference
python sample_cond_ldm.py --cfg configs/BSDS_sample_IRT4K.yaml