- Lecture 11 - NumPy
- Lecture 12 - Pandas
- Lecture 13 - Plotting Grpahs
- Lecture 14 - Structured Query Language(SQL) - Basic
- Lecture 15 - Structured Query Language(SQL) - Advance
- Lecture 16 - Indexing And SQLite
- Lecture 19 - Web Scraping - BeautifulSoup
- Lecture 32 - Introduction To Machine Learning
- Lecture 33 - Linear Regression
- Lecture 33 - Multi Variable Regression
- Lecture 34 - Feature Scaling
- Lecture 35 - Logistic Regression
- Lecture 36 - Classification Measures
- Lecture 37 - Decision Tree 1
- Lecture 38 - Decision Tree 2
- Lecture 39 - Random Forest
- Lecture 40 - Naive Bayes
- Lecture 41 - K - Nearest Neighbours (K - NN)
- Lecture 42 - Support Vector Machine (SVM)
- Lecture 43 - Principal Component Analysis (PCA) - 1
- Lecture 44 - Principal Component Analysis (PCA) - 2
- Lecture 45 - Natural Language Processing (NLP) - 1
- Lecture 46 - Natural Language Processing (NLP) - 2
- Lecture 47 - Neural Networks - 1
- Lecture 48 - Neural Networks - 2
- Lecture 49 - TensorFlow
- Lecture 50 - Keras
- Lecture 51 - Convolution Neral Network - 1
- Lecture 52 - Convolution Neral Network - 2
- Lecture 53 - Recurrent Neural Network
- Lecture 54 - Long Short Term Memory
- Lecture 55 - Unsupervised Learning - 1
- Lecture 56 - Unsupervised Learning - 2
- Project: Gradient Descent
- Project: Logistic Regression
- Project: Text Classification
- Project: Twitter Sentiment Analysis
- L34.2 Complexity Analysis Of Normal Equation
- L34.4 Learning Rate