Skip to content

🏒 Enterprise Business Network Mapping System | Scalable graph database architecture for vendor-client relationship visualization | Neo4j + Microservices + 1M+ business entities | Complete system design case study with performance analysis

Notifications You must be signed in to change notification settings

Ravik5/Business-network-system-design

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Business Network System Design

A comprehensive system design case study for building a scalable business relationship mapping platform.

πŸ“‹ Table of Contents

🎯 Overview

This repository contains a detailed system design for a business network mapping platform that helps companies visualize and manage their vendor-client relationships. The system is designed to handle enterprise-scale data while providing real-time insights into business connections.

πŸ“– Problem Statement

Modern businesses operate within complex networks of vendors, clients, and partners. Understanding these relationships is crucial for:

  • Strategic Decision Making: Identifying key business dependencies and opportunities
  • Risk Management: Understanding potential supply chain vulnerabilities
  • Growth Planning: Discovering new business opportunities through network analysis
  • Operational Efficiency: Optimizing vendor and client management processes

Core Challenge

Design a system that efficiently maps and navigates business relationship networks, enabling users to visualize connections, search for specific relationships, and expand their network while maintaining high performance and availability.

πŸ”§ System Requirements

Functional Requirements

Primary Use Cases

  1. Network Visualization

    • Users can view their business's complete network map
    • Visual representation of vendor and client relationships
    • Interactive exploration of direct and indirect connections
  2. Relationship Search & Discovery

    • Search for specific businesses within the network
    • Understand direct and indirect relationship paths
    • Filter relationships by various criteria (transaction volume, relationship type, etc.)
  3. Network Management

    • Add new vendor/client relationships
    • Handle duplicate business entries with different identifiers
    • Update relationship metadata and transaction volumes
  4. High Availability Operations

    • System maintains 99.9% uptime
    • Sub-second response times for common operations
    • Graceful handling of peak traffic loads

Non-Functional Requirements

Scale Specifications

  • Business Entities: 1 million businesses in the network
  • Relationship Density: Up to 100 direct relationships per business
  • Query Volume: 10 million relationship searches per month
  • Traffic Pattern: Non-uniform distribution with hot-spot queries

Performance Targets

  • Search Latency: < 200ms for direct relationship queries
  • Network Visualization: < 1s for small networks (< 50 nodes)
  • Bulk Operations: Handle up to 1000 relationship updates per minute
  • Availability: 99.9% uptime with < 5 minutes recovery time

Data Characteristics

  • Relationship Type: Undirected, weighted by transaction volume
  • Data Consistency: Eventually consistent across distributed nodes
  • Update Frequency: Real-time relationship updates from transaction systems

πŸ—οΈ Architecture Design

High-Level Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Client Apps   β”‚    β”‚   Web Portal    β”‚    β”‚   Mobile App    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
          β”‚                      β”‚                      β”‚
          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                 β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚              API Gateway                        β”‚
         β”‚        (Rate Limiting, Auth, Routing)           β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                          β”‚                          β”‚
β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”€β”            β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”
β”‚Search  β”‚            β”‚Network Service  β”‚         β”‚Business     β”‚
β”‚Service β”‚            β”‚                 β”‚         β”‚Service      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    β”‚                          β”‚                          β”‚
    β”‚                          β”‚                          β”‚
β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”€β”            β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”
β”‚Search  β”‚            β”‚Graph Database   β”‚         β”‚Business DB  β”‚
β”‚Index   β”‚            β”‚(Neo4j/Amazon    β”‚         β”‚(PostgreSQL) β”‚
β”‚(Elasticβ”‚            β”‚Neptune)         β”‚         β”‚             β”‚
β”‚search) β”‚            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Components

1. API Gateway Layer

  • Authentication & Authorization: JWT-based auth with role-based access
  • Rate Limiting: Prevent abuse and ensure fair usage
  • Request Routing: Direct requests to appropriate microservices
  • API Versioning: Support multiple API versions for backward compatibility

2. Business Service

  • Business Entity Management: CRUD operations for business profiles
  • Duplicate Detection: AI-powered matching for similar business entities
  • Data Validation: Ensure business data integrity and completeness

3. Network Service

  • Relationship Management: Handle vendor-client relationship operations
  • Graph Traversal: Efficient algorithms for network exploration
  • Weight Calculation: Dynamic relationship scoring based on transaction volume
  • Network Analytics: Compute network metrics and insights

4. Search Service

  • Full-Text Search: Advanced search capabilities across business entities
  • Relationship Queries: Fast lookup of direct and indirect connections
  • Autocomplete: Real-time suggestions for business names and categories
  • Search Analytics: Track popular queries for optimization

Data Storage Strategy

Graph Database (Primary)

Technology: Neo4j / Amazon Neptune
Purpose: Store business relationships and enable graph traversal
Schema:
  - Nodes: Business entities with properties (name, category, location, etc.)
  - Edges: Relationships with weights (transaction_volume, relationship_type, created_date)

Relational Database (Secondary)

Technology: PostgreSQL
Purpose: Store detailed business profiles and transactional data
Tables:
  - businesses: Complete business information
  - transactions: Historical transaction records
  - users: User accounts and permissions

Search Index

Technology: Elasticsearch
Purpose: Enable fast full-text search and filtering
Indices:
  - business_index: Searchable business profiles
  - relationship_index: Relationship metadata for quick filtering

Caching Layer

Technology: Redis
Purpose: Cache frequently accessed data and query results
Cache Types:
  - Query Results: Popular relationship searches
  - Business Profiles: Frequently accessed business data
  - Network Subgraphs: Common network visualization requests

πŸ” Implementation Details

Graph Database Schema

// Business Node
CREATE (b:Business {
  id: 'business_123',
  name: 'Acme Corporation',
  category: 'Manufacturing',
  location: 'New York, NY',
  size: 'Large',
  created_at: timestamp(),
  updated_at: timestamp()
})

// Relationship Edge
CREATE (b1:Business)-[r:TRANSACTS_WITH {
  transaction_volume: 50000.00,
  relationship_type: 'vendor',
  frequency: 'monthly',
  created_at: timestamp(),
  last_transaction: timestamp()
}]->(b2:Business)

API Design

Core Endpoints

GET    /api/v1/businesses/{id}/network
GET    /api/v1/businesses/{id}/relationships
POST   /api/v1/businesses/{id}/relationships
GET    /api/v1/search/businesses?q={query}
GET    /api/v1/search/relationships?from={id}&to={id}
POST   /api/v1/businesses
PUT    /api/v1/businesses/{id}
DELETE /api/v1/businesses/{id}/relationships/{relationship_id}

Response Format

{
  "status": "success",
  "data": {
    "business": {
      "id": "business_123",
      "name": "Acme Corporation",
      "category": "Manufacturing",
      "relationships": [
        {
          "id": "rel_456",
          "connected_business": {
            "id": "business_789",
            "name": "Supplier Co"
          },
          "relationship_type": "vendor",
          "transaction_volume": 50000.00,
          "weight": 0.85
        }
      ]
    }
  },
  "metadata": {
    "total_relationships": 45,
    "query_time_ms": 150
  }
}

Algorithms & Performance

Graph Traversal Algorithm

def find_relationship_path(start_business_id, end_business_id, max_depth=3):
    """
    Find shortest path between two businesses using BFS
    Returns path with relationship weights and intermediate nodes
    """
    # Implementation using Neo4j Cypher or custom BFS
    query = """
    MATCH path = shortestPath(
      (start:Business {id: $start_id})-[*..{max_depth}]-(end:Business {id: $end_id})
    )
    RETURN path, reduce(weight = 0, r in relationships(path) | weight + r.transaction_volume) as total_weight
    """

Caching Strategy

# Redis caching for frequent queries
cache_key = f"network:{business_id}:{depth}:{timestamp_hour}"
cached_result = redis.get(cache_key)

if cached_result:
    return json.loads(cached_result)
else:
    result = compute_business_network(business_id, depth)
    redis.setex(cache_key, 3600, json.dumps(result))  # 1 hour TTL
    return result

πŸ“Š Performance Analysis

Scalability Metrics

Component Current Capacity Scale Target Scaling Strategy
Graph DB 1M nodes, 100M edges 10M nodes, 1B edges Horizontal sharding by geographic region
Search Index 10M documents 100M documents Index partitioning and replica scaling
API Gateway 1K RPS 10K RPS Auto-scaling with load balancers
Cache Layer 100GB data 1TB data Redis clustering with consistent hashing

Performance Optimization

Database Optimization

  • Indexing Strategy: Composite indexes on frequently queried fields
  • Query Optimization: Prepared statements and query plan caching
  • Connection Pooling: Efficient database connection management

Caching Strategy

  • Multi-Level Caching: L1 (Application), L2 (Redis), L3 (CDN)
  • Cache Invalidation: Event-driven cache updates for data consistency
  • Hot Data Identification: Analytics-driven cache warming

Search Optimization

  • Index Tuning: Optimized mapping and analyzer configuration
  • Query Optimization: Efficient aggregation and filtering
  • Result Caching: Cache popular search results

πŸ“ Repository Structure

business-network-system/
β”œβ”€β”€ README.md
β”œβ”€β”€ docs/
β”‚   β”œβ”€β”€ architecture/
β”‚   β”‚   β”œβ”€β”€ system-overview.md
β”‚   β”‚   β”œβ”€β”€ database-design.md
β”‚   β”‚   └── api-specification.md
β”‚   β”œβ”€β”€ deployment/
β”‚   β”‚   β”œβ”€β”€ infrastructure.md
β”‚   β”‚   └── monitoring.md
β”‚   └── analysis/
β”‚       β”œβ”€β”€ business-analysis.pptx
β”‚       └── performance-benchmarks.md
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ api-gateway/
β”‚   β”œβ”€β”€ business-service/
β”‚   β”œβ”€β”€ network-service/
β”‚   β”œβ”€β”€ search-service/
β”‚   └── shared/
β”œβ”€β”€ infrastructure/
β”‚   β”œβ”€β”€ docker/
β”‚   β”œβ”€β”€ kubernetes/
β”‚   └── terraform/
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ unit/
β”‚   β”œβ”€β”€ integration/
β”‚   └── performance/
└── examples/
    β”œβ”€β”€ api-usage/
    └── client-implementations/

πŸš€ Getting Started

Prerequisites

  • Docker & Docker Compose
  • Node.js 18+ or Python 3.9+
  • Neo4j Database
  • Redis Cache
  • Elasticsearch

Quick Start

# Clone the repository
git clone https://github.com/Ravik5/business-network-system.git
cd business-network-system

# Start infrastructure services
docker-compose up -d

# Install dependencies
npm install  # or pip install -r requirements.txt

# Run the application
npm start    # or python app.py

πŸ“ˆ Future Enhancements

Phase 2 Features

  • Machine Learning Integration: Predictive relationship recommendations
  • Advanced Analytics: Network influence scoring and trend analysis
  • Real-time Notifications: Alerts for significant network changes
  • Data Export: Comprehensive reporting and data export capabilities

Phase 3 Features

  • Industry Benchmarking: Compare networks against industry standards
  • Risk Assessment: Automated risk scoring for vendor dependencies
  • Integration Hub: Connect with popular ERP and CRM systems
  • Mobile Optimization: Enhanced mobile experience with offline capabilities

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details on:

  • Code standards and style guide
  • Testing requirements
  • Pull request process
  • Issue reporting guidelines

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ“ž Support

For questions and support:


⭐ If you find this project helpful, please give it a star!

About

🏒 Enterprise Business Network Mapping System | Scalable graph database architecture for vendor-client relationship visualization | Neo4j + Microservices + 1M+ business entities | Complete system design case study with performance analysis

Topics

Resources

Contributing

Stars

Watchers

Forks

Packages

No packages published