|
| 1 | +```agda |
| 2 | +open import Cat.Prelude |
| 3 | +
|
| 4 | +import Cat.Diagram.Coequaliser.Split as SplitCoeq |
| 5 | +import Cat.Reasoning |
| 6 | +import Cat.Functor.Reasoning |
| 7 | +
|
| 8 | +module Cat.Diagram.Coequaliser.Split.Properties where |
| 9 | +``` |
| 10 | + |
| 11 | +# Properties of split coequalizers |
| 12 | + |
| 13 | +This module proves some general properties of [split coequalisers]. |
| 14 | + |
| 15 | +[split coequalisers]: Cat.Diagram.Coequaliser.Split.html |
| 16 | + |
| 17 | +## Absoluteness |
| 18 | + |
| 19 | +The property of being a split coequaliser is a purely diagrammatic one, which has |
| 20 | +the lovely property of being preserved by _all_ functors. We call such colimits |
| 21 | +absolute. |
| 22 | + |
| 23 | +```agda |
| 24 | +module _ {o o′ ℓ ℓ′} |
| 25 | + {C : Precategory o ℓ} {D : Precategory o′ ℓ′} |
| 26 | + (F : Functor C D) where |
| 27 | +``` |
| 28 | +<!-- |
| 29 | +```agda |
| 30 | + private |
| 31 | + module C = Cat.Reasoning C |
| 32 | + module D = Cat.Reasoning D |
| 33 | + open Cat.Functor.Reasoning F |
| 34 | + open SplitCoeq |
| 35 | + variable |
| 36 | + A B E : C.Ob |
| 37 | + f g e s t : C.Hom A B |
| 38 | +``` |
| 39 | +--> |
| 40 | + |
| 41 | +The proof follows the fact that functors preserve diagrams, and reduces to a bit |
| 42 | +of symbol shuffling. |
| 43 | + |
| 44 | +```agda |
| 45 | + is-split-coequaliser-absolute |
| 46 | + : is-split-coequaliser C f g e s t |
| 47 | + → is-split-coequaliser D (F₁ f) (F₁ g) (F₁ e) (F₁ s) (F₁ t) |
| 48 | + is-split-coequaliser-absolute |
| 49 | + {f = f} {g = g} {e = e} {s = s} {t = t} split-coeq = F-split-coeq |
| 50 | + where |
| 51 | + open is-split-coequaliser split-coeq |
| 52 | +
|
| 53 | + F-split-coeq : is-split-coequaliser D _ _ _ _ _ |
| 54 | + F-split-coeq .coequal = weave coequal |
| 55 | + F-split-coeq .rep-section = annihilate rep-section |
| 56 | + F-split-coeq .witness-section = annihilate witness-section |
| 57 | + F-split-coeq .commute = weave commute |
| 58 | +``` |
0 commit comments