|
2 | 2 |
|
3 | 3 | Taken from [Computational Trilogy](https://ncatlab.org/nlab/show/computational+trilogy), it's actually more of a quadrilogy (or tetralogy).
|
4 | 4 |
|
5 |
| -| logic | set theory | category theory | type theory | |
6 |
| -|:-----:|:----------:|:---------------:|:-----------:| |
7 |
| -| proposition | set | object| type| |
8 |
| -| predicate| family of sets| display morphism| dependent type| |
9 |
| -| proof| element| generalized element| term/program| |
10 |
| -| cut rule || composition of classifying morphisms / pullback of display maps | substitution| |
11 |
| -| introduction rule for implication|| counit for hom-tensor adjunction| lambda | |
12 |
| -| elimination rule for implication || unit for hom-tensor adjunction| application| |
13 |
| -| cut elimination for implication|| one of the zigzag identities for hom-tensor adjunction| beta reduction| |
14 |
| -| identity elimination for implication || the other zigzag identity for hom-tensor adjunction | eta conversion| |
15 |
| -| true | singleton | terminal object/(-2)-truncated object| h-level 0-type/unit type| |
16 |
| -| false| empty set | initial object| empty type | |
17 |
| -| proposition, truth value | subsingleton| subterminal object/(-1)-truncated object| h-proposition, mere proposition| |
18 |
| -| logical conjunction | cartesian product| product | product type| |
19 |
| -| disjunction| disjoint union (support of)| coproduct ((-1)-truncation of)| sum type (bracket type of)| |
20 |
| -| implication| function set (into subsingleton)| internal hom (into subterminal object)| function type (into h-proposition)| |
21 |
| -| negation | function set into empty set| internal hom into initial object| function type into empty type | |
22 |
| -| universal quantification | indexed cartesian product (of family of subsingletons) | dependent product (of family of subterminal objects)| dependent product type (of family of h-propositions)| |
23 |
| -| existential quantification| indexed disjoint union (support of)| dependent sum ((-1)-truncation of)| dependent sum type (bracket type of)| |
24 |
| -| logical equivalence | bijection set | object of isomorphisms | equivalence type| |
25 |
| -|| support set| support object/(-1)-truncation| propositional truncation/bracket type | |
26 |
| -||| n-image of morphism into terminal object/n-truncation| n-truncation modality| |
27 |
| -| equality | diagonal function/diagonal subset/diagonal relation| path space object| identity type/path type | |
28 |
| -| completely presented set | set| discrete object/0-truncated object| h-level 2-type/set/h-set| |
29 |
| -| set| set with equivalence relation| internal 0-groupoid| Bishop set/setoid with its pseudo-equivalence relation an actual equivalence relation | |
30 |
| -|| equivalence class/quotient set | quotient| quotient type | |
31 |
| -| induction|| colimit | inductive type, W-type, M-type| |
32 |
| -| higher induction|| higher colimit| higher inductive type| |
33 |
| -| -|| 0-truncated higher colimit| quotient inductive type | |
34 |
| -| coinduction|| limit | coinductive type| |
35 |
| -|| preset || type without identity types | |
36 |
| -|| set of truth values| subobject classifier| type of propositions| |
37 |
| -| domain of discourse | universe| object classifier| type universe | |
38 |
| -| modality || closure operator, (idempotent) monad| modal type theory, monad (in computer science)| |
39 |
| -| linear logic || (symmetric, closed) monoidal category| linear type theory/quantum computation| |
40 |
| -| proof net|| string diagram| quantum circuit | |
41 |
| -| (absence of) contraction rule|| (absence of) diagonal| no-cloning theorem| |
42 |
| -||| synthetic mathematics| domain specific embedded programming language| |
| 5 | +| **logic** | **set theory** | **category theory** | **type theory** | |
| 6 | +|--------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------| |
| 7 | +| proposition | set | object | type | |
| 8 | +| predicate | family of sets | display morphism | dependent type | |
| 9 | +| proof | element | generalized element | term/program | |
| 10 | +| cut rule | | composition of classifying morphisms / pullback of display maps | substitution | |
| 11 | +| introduction rule for implication | | counit for hom-tensor adjunction | lambda | |
| 12 | +| elimination rule for implication | | unit for hom-tensor adjunction | application | |
| 13 | +| cut elimination for implication | | one of the zigzag identities for hom-tensor adjunction | beta reduction | |
| 14 | +| identity elimination for implication | | the other zigzag identity for hom-tensor adjunction | eta conversion | |
| 15 | +| true | singleton | terminal object/(-2)-truncated object | h-level 0-type/unit type | |
| 16 | +| false | empty set | initial object | empty type | |
| 17 | +| proposition, truth value | subsingleton | subterminal object/(-1)-truncated object | h-proposition, mere proposition | |
| 18 | +| logical conjunction | cartesian product | product | product type | |
| 19 | +| disjunction | disjoint union (support of) | coproduct ((-1)-truncation of) | sum type (bracket type of) | |
| 20 | +| implication | function set (into subsingleton) | internal hom (into subterminal object) | function type (into h-proposition) | |
| 21 | +| negation | function set into empty set | internal hom into initial object | function type into empty type | |
| 22 | +| universal quantification | indexed cartesian product (of family of subsingletons) | dependent product (of family of subterminal objects) | dependent product type (of family of h-propositions) | |
| 23 | +| existential quantification | indexed disjoint union (support of) | dependent sum ((-1)-truncation of) | dependent sum type (bracket type of) | |
| 24 | +| logical equivalence | bijection set | object of isomorphisms | equivalence type | |
| 25 | +| | support set | support object/(-1)-truncation | propositional truncation/bracket type | |
| 26 | +| | | n-image of morphism into terminal object/n-truncation | n-truncation modality | |
| 27 | +| equality | diagonal function/diagonal subset/diagonal relation | path space object | identity type/path type | |
| 28 | +| completely presented set | set | discrete object/0-truncated object | h-level 2-type/set/h-set | |
| 29 | +| set | set with equivalence relation | internal 0-groupoid | Bishop set/setoid with its pseudo-equivalence relation an actual equivalence relation | |
| 30 | +| | equivalence class/quotient set | quotient | quotient type | |
| 31 | +| induction | | colimit | inductive type, W-type, M-type | |
| 32 | +| higher induction | | higher colimit | higher inductive type | |
| 33 | +| - | | 0-truncated higher colimit | quotient inductive type | |
| 34 | +| coinduction | | limit | coinductive type | |
| 35 | +| | preset | | type without identity types | |
| 36 | +| | set of truth values | subobject classifier | type of propositions | |
| 37 | +| domain of discourse | universe | object classifier | type universe | |
| 38 | +| modality | | closure operator, (idempotent) monad | modal type theory, monad (in computer science) | |
| 39 | +| linear logic | | (symmetric, closed) monoidal category | linear type theory/quantum computation | |
| 40 | +| proof net | | string diagram | quantum circuit | |
| 41 | +| (absence of) contraction rule | | (absence of) diagonal | no-cloning theorem | |
| 42 | +| | | synthetic mathematics | domain specific embedded programming language | |
43 | 43 |
|
44 | 44 | ## Work in progress
|
45 | 45 |
|
|
0 commit comments