Skip to content

CLI Parameters

natowi edited this page Jun 26, 2019 · 21 revisions

CLI Parameters (WIP)

Default pipeline:

aliceVision_cameraInit -> aliceVision_featureExtraction -> `aliceVision_imageMatching`_ -> `aliceVision_featureMatching`_ -> `aliceVision_incrementalSfM`_ -> `aliceVision_prepareDenseScene`_ -> aliceVision_depthMapEstimation -> aliceVision_depthMapFiltering -> `aliceVision_meshing`_ -> aliceVision_depthMapFiltering -> `aliceVision_texturing`_

aliceVision_cameraInit

Required parameters:

-i [ --input ] arg

A SfMData file (*.sfm) [if specified,--imageFolder cannot be used].

--imageFolder arg

Input images folder [if specified, --input cannot be used].

-s [ --sensorDatabase ] arg

Camera sensor width database path.

-o [ --output ] arg (=cameraInit.sfm)

Output file path for the new SfMData file

Optional parameters:

--defaultFocalLengthPix arg (=-1)

Focal length in pixels. (or '-1' to unset)

--defaultFieldOfView arg (=-1)

Empirical value for the field of view in degree. (or '-1' to unset)

--defaultIntrinsic arg

Intrinsics Kmatrix "f;0;ppx;0;f;ppy;0;0;1".

--defaultCameraModel arg

Camera model type (pinhole, radial1, radial3, brown, fisheye4, fisheye1).

--groupCameraFallback arg (=folder)

When there is no serial number in the image metadata, we cannot know if the images come from the same camera. This is problematic for grouping images sharing the same internal camera settings and we have to decide on a fallback strategy:

  • global: all images may come from a single device (make/model/focal will still be a differentiator).
  • folder: different folders will be considered as different devices
  • image: consider that each image has different internal camera parameters

--allowSingleView arg (=0)

Allow the program to process a single view.

Warning: if a single view is process, the output file can't be use in many other programs.

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_cameraLocalization

This program takes as input a media (image, image sequence, video) and a database (vocabulary tree, 3D scene data) and returns for each frame a pose estimation for the camera.

Required input parameters:

--sfmdata arg

The sfm_data.json kind of file generated by AliceVision.

--mediafile arg

The folder path or the filename for the media to track

Options for the output of the localizer:

-h [ --help ]

--visualDebug arg

If a folder is provided it enables visual debug and saves all the debugging info in that folder

--outputAlembic arg (=trackedcameras.abc)

Filename for the SfMData export file (where camera poses will be stored).

Default : trackedcameras.abc.

--outputJSON arg

Filename for the localization results (raw data) as .json

Common optional parameters for the localizer:

--descriptorPath arg

Folder containing the descriptors for all the images (ie the *.desc.)

--matchDescTypes arg (=sift)

The describer types to use for the matching

--preset arg (=normal)

Preset for the feature extractor when localizing a new image {LOW,MEDIUM,NORMAL,HIGH,ULTRA}

--resectionEstimator arg (=acransac)

The type of *sac framework to use for resection (acransac, loransac)

--matchingEstimator arg (=acransac)

The type of *sac framework to use for matching (acransac, loransac)

--calibration arg

Calibration file

--refineIntrinsics arg

Enable/Disable camera intrinsics refinement for each localized image

--reprojectionError arg (=4)

Maximum reprojection error (in pixels) allowed for resectioning. If set to 0 it lets the ACRansac select an optimal value.

Parameters specific for the vocabulary tree-based localizer:

--nbImageMatch arg (=4)

[voctree] Number of images to retrieve in database

--maxResults arg (=10)

[voctree] For algorithm AllResults, it stops the image matching when this number of matched images is reached. If 0 it is ignored.

--commonviews arg (=3)

[voctree] Number of minimum images in which a point must be seen to be used in cluster tracking

--voctree arg

[voctree] Filename for the vocabulary tree

--voctreeWeights arg

[voctree] Filename for the vocabulary tree weights

--algorithm arg (=AllResults)

[voctree] Algorithm type: FirstBest, AllResults

--matchingError arg (=4)

[voctree] Maximum matching error (in pixels) allowed for image matching with geometric verification. If set to 0 it lets the ACRansac select an optimal value.

--nbFrameBufferMatching arg (=10)

[voctree] Number of previous frame of the sequence to use for matching (0 = Disable)

--robustMatching arg (=1)

[voctree] Enable/Disable the robust matching between query and database images, all putative matches will be considered.

Parameters specific for final (optional) bundle adjustment optimization of the sequence:

--globalBundle arg

[bundle adjustment] If --refineIntrinsics is not set, this option allows to run a final global bundle adjustment to refine the scene

--noDistortion arg

[bundle adjustment] It does not take into account distortion during the BA, it consider the distortion coefficients all equal to 0

--noBArefineIntrinsics arg

[bundle adjustment] It does not refine intrinsics during BA

--minPointVisibility arg (=0)

[bundle adjustment] Minimum number of observation that a point must have in order to be considered for bundle adjustment

aliceVision_computeSfMColor

Required parameters:

-i [ --input ] arg

SfMData file.

-o [ --output ] arg

Output SfMData filename (.json, .bin, .xml, .ply, .baf, .abc).

Log parameters:

-v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_ComputeStructureFromKnownPoses

Required parameters:

-i [ --input ] arg

SfMData file.

-o [ --output ] arg

Output path for the features and descriptors files (*.feat, *.desc).

-f [ --featuresFolders ] arg

Path to folder(s) containing the extracted features.

Optional parameters:

-d [ --describerTypes ] arg (=sift)

Describer types used to describe an image:

  • sift: Scale-invariant feature transform.
  • sift_float: SIFT stored as float.
  • sift_upright: SIFT with upright feature.
  • akaze: A-KAZE with floating point descriptors.
  • akaze_liop: A-KAZE with Local Intensity Order Pattern descriptors.
  • akaze_mldb: A-KAZE with Modified-Local Difference Binary descriptors.

-m [ --matchesFolders ] arg

Path to folder(s) in which computed matches are stored.

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_convertRAW

Required parameters:

-i [ --input ] arg

Input folder containing the sift in float format.

-o [ --output ] arg

Output folder that stores the sift in uchar format.

Optional parameters:

-s [ --sanityCheck ] arg (=0)

Perform a sanity check to check that the conversion and the generated files are the same.

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_convertSfMFormat

Required parameters:

-i [ --input ] arg

SfMData file.

-o [ --output ] arg

Path to the output Alembic file.

Optional parameters:

-d [ --describerTypes ] arg (=sift)

Describer types used to describe an image:

  • sift: Scale-invariant feature transform.
  • sift_float: SIFT stored as float.
  • sift_upright: SIFT with upright feature.
  • akaze: A-KAZE with floating point descriptors.
  • akaze_liop: A-KAZE with Local Intensity Order Pattern descriptors.
  • akaze_mldb: A-KAZE with Modified-Local Difference Binary descriptors.

--imageWhiteList arg (=[])

image white list (uids or image paths).

--views arg (=1)

Export views.

--intrinsics arg (=1)

Export intrinsics.

--extrinsics arg (=1)

Export extrinsics.

--structure arg (=1)

Export structure.

--observations arg (=1)

Export observations.

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_depthMapEstimation

Estimate depth map for each input image.

Required parameters:

-i [ --input ] arg

SfMData file.

--imagesFolder arg

Images folder. Filename should be the image uid.

-o [ --output ] arg

Output folder for generated depth maps.

Optional parameters:

--rangeStart arg (=-1)

Compute a sub-range of images from index rangeStart to rangeStart+rangeSize.

--rangeSize arg (=-1)

Compute a sub-range of N images (N=rangeSize).

--downscale arg (=2)

Image downscale factor.

--minViewAngle arg (=2)

minimum angle between two views.

--maxViewAngle arg (=70)

maximum angle between two views.

--sgmMaxTCams arg (=10)

Semi Global Matching: Number of neighbour cameras.

--sgmWSH arg (=4)

Semi Global Matching: Size of the patch used to compute the similarity.

--sgmGammaC arg (=5.5)

Semi Global Matching: GammaC threshold.

--sgmGammaP arg (=8)

Semi Global Matching: GammaP threshold.

--refineMaxTCams arg (=6)

Refine: Number of neighbour cameras.

--refineNSamplesHalf arg (=150)

Refine: Number of samples.

--refineNDepthsToRefine arg (=31)

Refine: Number of depths.

--refineNiters arg (=100)

Refine: Number of iterations.

--refineWSH arg (=3)

Refine: Size of the patch used to compute the similarity.

--refineSigma arg (=15)

Refine: Sigma threshold.

--refineGammaC arg (=15.5)

Refine: GammaC threshold.

--refineGammaP arg (=8)

Refine: GammaP threshold.

--refineUseTcOrRcPixSize arg (=0)

Refine: Use current camera pixel size or minimum pixel size of neighbour cameras.

--exportIntermediateResults arg (=0)

Export intermediate results from the SGM and Refine steps.

--nbGPUs arg (=0)

Number of GPUs to use (0 means use all GPUs).

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_depthMapFiltering

Filter depth map to remove values that are not consistent with other depth maps.

Required parameters:

-i [ --input ] arg

SfMData file.

--depthMapsFolder arg

Input depth map folder.

-o [ --output ] arg

Output folder for filtered depth maps.

Optional parameters:

--rangeStart arg (=-1)

Compute only a sub-range of images from index rangeStart to rangeStart+rangeSize.

--rangeSize arg (=-1)

Compute only a sub-range of N images (N=rangeSize).

--minViewAngle arg (=2)

minimum angle between two views.

--maxViewAngle arg (=70)

maximum angle between two views.

--minNumOfConsistentCams arg (=3)

Minimal number of consistent cameras to consider the pixel.

--minNumOfConsistentCamsWithLowSimilarity arg (=4)

Minimal number of consistent cameras to consider the pixel when the similarity is weak or ambiguous.

--pixSizeBall arg (=0)

Filter ball size (in px).

--pixSizeBallWithLowSimilarity arg (=0)

Filter ball size (in px) when the similarity is weak or ambiguous.

--nNearestCams arg (=10)

Number of nearest cameras.

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_exportAnimatedCamera

Required parameters:

-i [ --input ] arg

SfMData file containing a complete SfM.

-o [ --output ] arg

Output folder.

Optional parameters:

--exportUndistortedImages arg (=1)

Export undistorted images for the animated camera(s). If false, animated camera(s) exported with original frame paths.

--viewFilter arg

Path to the output SfMData file (with only views and poses).

--undistortedImageType arg (=jpg)

Image file type: * .jpg * .png * .tif * .exr (half)

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_exportCameraFrustums

Export camera frustrums as a triangle PLY file

Required parameters:

-i [ --input ] arg

SfMData file.

-o [ --output ] arg

PLY file to store the camera frustums as triangle meshes.

Log parameters:

-v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_exportKeypoints

Required parameters:

-i [ --input ] arg

SfMData file.

-o [ --output ] arg

Output path for keypoints.

-f [ --featuresFolders ] arg

Path to folder(s) containing the extracted features.

Optional parameters

-d [ --describerTypes ] arg (=sift)

Describer types used to describe an image:

  • sift: Scale-invariant feature transform.
  • sift_float: SIFT stored as float.
  • sift_upright: SIFT with upright feature.
  • akaze: A-KAZE with floating point descriptors.
  • akaze_liop: A-KAZE with Local Intensity Order Pattern descriptors.
  • akaze_mldb: A-KAZE with Modified-Local Difference Binary descriptors.

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_exportMatches

Required parameters:

-i [ --input ] arg

SfMData file.

-o [ --output ] arg

Output path for matches.

-f [ --featuresFolders ] arg

Path to folder(s) containing the extracted features.

-m [ --matchesFolders ] arg

Path to folder(s) in which computed matches are stored.

Optional parameters:

-d [ --describerTypes ] arg (=sift)

Describer types used to describe an image:

  • sift: Scale-invariant feature transform.
  • sift_float: SIFT stored as float.
  • sift_upright: SIFT with upright feature.
  • akaze: A-KAZE with floating point descriptors.
  • akaze_liop: A-KAZE with Local Intensity Order Pattern descriptors.
  • akaze_mldb: A-KAZE with Modified-Local Difference Binary descriptors.

Log parameters:

-v [ --verboseLevel ] arg (=info)

verbosity level (fatal, error, warning, info, debug, trace).

aliceVision_exportMatlab

Required parameters: -i [ --input ] arg SfMData file. -o [ --output ] arg Output folder.

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).

aliceVision_exportMeshlab

Required parameters: -i [ --input ] arg SfMData file. --ply arg Ply. -o [ --output ] arg Output folder.

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).

aliceVision_exportMeshroomMaya

Required parameters: -i [ --input ] arg SfMData file. -o [ --output ] arg Output folder.

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).

aliceVision_exportMVE2

Required parameters: -i [ --input ] arg SfMData file. -o [ --output ] arg Output folder.

Note: this program writes output in MVE file format

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).

aliceVision_exportMVSTexturing.exe AliceVision exportMVSTexturing:

Required parameters: -i [ --input ] arg SfMData file. -o [ --output ] arg Output folder.

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).

aliceVision_exportPMVS

Required parameters: -i [ --input ] arg SfMData file. -o [ --output ] arg Output path for keypoints.

Optional parameters: --resolution arg (=1) Divide image coefficient --nbCore arg (=8) Nb core --useVisData arg (=1) Use visibility information.

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).

aliceVision_exportTracks

Required parameters: -i [ --input ] arg SfMData file. -o [ --output ] arg Output path for tracks. -f [ --featuresFolders ] arg Path to folder(s) containing the

extracted features.
-m [ --matchesFolders ] arg Path to folder(s) in which computed
matches are stored.

Optional parameters: -d [ --describerTypes ] arg (=sift) Describer types used to describe an

image: * sift: Scale-invariant feature transform. * sift_float: SIFT stored as float. * sift_upright: SIFT with upright feature. * akaze: A-KAZE with floating point descriptors. * akaze_liop: A-KAZE with Local Intensity Order Pattern descriptors. * akaze_mldb: A-KAZE with Modified-Local Difference Binary descriptors.

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).

aliceVision_featureExtraction

Required parameters: -i [ --input ] arg SfMData file. -o [ --output ] arg Output path for the features and

descriptors files (*.feat, *.desc).

Optional parameters: -d [ --describerTypes ] arg (=sift) Describer types used to describe an

image: * sift: Scale-invariant feature transform. * sift_float: SIFT stored as float. * sift_upright: SIFT with upright feature. * akaze: A-KAZE with floating point descriptors. * akaze_liop: A-KAZE with Local Intensity Order Pattern descriptors. * akaze_mldb: A-KAZE with Modified-Local Difference Binary descriptors.
-p [ --describerPreset ] arg (=normal)
Control the ImageDescriber configuration (low, medium, normal, high, ultra). Configuration 'ultra' can take long time !
--forceCpuExtraction arg (=0) Use only CPU feature extraction
methods.

--rangeStart arg (=-1) Range image index start. --rangeSize arg (=1) Range size. --maxThreads arg (=0) Specifies the maximum number of threads

to run simultaneously (0 for automatic mode).

Log parameters: -v [ --verboseLevel ] arg (=info) verbosity level (fatal, error, warning,

info, debug, trace).
Clone this wiki locally