-
Couldn't load subscription status.
- Fork 96
Open
Description
n_bases=2
softGBM = SoftGradientBoostingRegressor(
estimator=MLP,
n_estimators=n_bases,
shrinkage_rate=1.00,
cuda=True
)
io.load(softGBM, save_dir='./torch_ensemble_results/softGBM/') # reload
criterion = StepwiseMSELoss()
softGBM.set_criterion(criterion)
softGBM.set_optimizer('Adam', lr=0.001, weight_decay=5e-4)
softGBM.set_scheduler("ReduceLROnPlateau")
# Re-training
softGBM.fit(train_loader=new_train_loader,
log_interval=128,
epochs=20,
test_loader=new_vali_loader,
save_model=True,
save_dir='./torch_ensemble_results/softGBM/')
I want to know my code above can work or not? if i have just trained the model in 20 epoches, and reload the model weights for the longer epoches training? if it make sense, why it would report bug like below:
sKAN_softGBM.fit(train_loader=new_train_loader,File "/home/WuBizhi/anaconda3/envs/torch-ensemble/lib/python3.9/site-packages/torchensemble/soft_gradient_boosting.py", line 514, in fit
super().fit(
File "/home/WuBizhi/anaconda3/envs/torch-ensemble/lib/python3.9/site-packages/torchensemble/soft_gradient_boosting.py", line 261, in fit
loss += criterion(output[idx], rets[idx])
IndexError: list index out of range
Metadata
Metadata
Assignees
Labels
No labels