-
Notifications
You must be signed in to change notification settings - Fork 68
Description
I came across a matrix (over rational_function_field(QQ, :q)
) where taking its inverse makes Julia hang. While it hangs, memory usage increases seemingly unbounded. After an interruption, futher matrix computations make Julia abort and throw a malloc error, (malloc_consolidate(): unaligned fastbin chunk detected).
I know that the matrix is invertible, as it squares to the identity.
The matrix is below.
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 (-q^8+q^6+2*q^4+q^2+1)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^7)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^6)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^6)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^5)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^4)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 0; 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 (2*q^7)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (q^8-q^6+2*q^4+q^2+1)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^5)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^5)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^4)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^3)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 (-2*q^6)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^5)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^4)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (q^8+q^6+q^2+1)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^3)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^2)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 (-2*q^6)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^5)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (q^8+q^6+q^2+1)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^4)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^3)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^2)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 (2*q^5)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^4)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^3)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^3)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (q^8+q^6+2*q^4-q^2+1)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0; 0 0 0 0 0 (-2*q^4)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q^3)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^2)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (-2*q^2)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (2*q)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 (q^8+q^6+2*q^4+q^2-1)//(q^8+q^6+2*q^4+q^2+1) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]